
Hirokawa Laboratory: Theory of Computation

Nao Hirokawa, Associate Professor

1/14

Area: Term Rewriting

Programming Languages

Automated Theorem Proving

2/14

Area: Term Rewriting

Programming Languages

Automated Theorem Proving

2/14

Programming Languages
quick sort (in C)

void qsort(int *a, int n)
{
if (n <= 0) return;
int i = 0, j = n - 1, x = a[n / 2];
do {

while (a[i] < x) i++;
while (x < a[j]) j--;
if (i <= j) swap(a, i++, j--);

} while (i <= j);
qsort(a, j);
qsort(a + i, n - i);

}

3/14

Programming Languages

quick sort (in Haskell)

qsort [] = []
qsort (x : xs) =
qsort [y | y <- xs, y < x] ++ [x] ++
qsort [y | y <- xs, y >= x]

language features (pattern matching, λ, laziness, ...)

program transformation (optimization, parsing, ...)

program analysis (termination, complexity analysis, ...)

4/14

Programming Languages

quick sort (in Haskell)

qsort [] = []
qsort (x : xs) =
qsort [y | y <- xs, y < x] ++ [x] ++
qsort [y | y <- xs, y >= x]

language features (pattern matching, λ, laziness, ...)

program transformation (optimization, parsing, ...)

program analysis (termination, complexity analysis, ...)

4/14

Programming Languages

quick sort (in Haskell)

qsort [] = []
qsort (x : xs) =
qsort [y | y <- xs, y < x] ++ [x] ++
qsort [y | y <- xs, y >= x]

language features (pattern matching, λ, laziness, ...)

program transformation (optimization, parsing, ...)

program analysis (termination, complexity analysis, ...)

4/14

Programming Languages

quick sort (in Haskell)

qsort [] = []
qsort (x : xs) =
qsort [y | y <- xs, y < x] ++ [x] ++
qsort [y | y <- xs, y >= x]

language features (pattern matching, λ, laziness, ...)

program transformation (optimization, parsing, ...)

program analysis (termination, complexity analysis, ...)

4/14

Programming Languages

quick sort (in Haskell)

qsort [] = []
qsort (x : xs) =
qsort [y | y <- xs, y < x] ++ [x] ++
qsort [y | y <- xs, y >= x]

language features (pattern matching, λ, laziness, ...)

program transformation (optimization, parsing, ...)

program analysis (termination, complexity analysis, ...)

4/14

Complexity Analysis

program
e.g. quick sort

COMPLEXITY TOOL complexity

O(n2)

power of state-of-art complexity analyzers:

bubble sort: O(n2)

merge sort: O(n2) actually O(n log n)

quick sort: not analyzable actually O(n2)

Euclidean algorithm: O(n2) actually O(n)

5/14

Complexity Analysis

program
e.g. quick sort

COMPLEXITY TOOL complexity

O(n2)

power of state-of-art complexity analyzers:
bubble sort: O(n2)

merge sort: O(n2) actually O(n log n)

quick sort: not analyzable actually O(n2)

Euclidean algorithm: O(n2) actually O(n)

5/14

Complexity Analysis

program
e.g. quick sort

COMPLEXITY TOOL complexity

O(n2)

power of state-of-art complexity analyzers:
bubble sort: O(n2)

merge sort: O(n2) actually O(n log n)

quick sort: not analyzable actually O(n2)

Euclidean algorithm: O(n2) actually O(n)

5/14

Complexity Analysis

program
e.g. quick sort

COMPLEXITY TOOL complexity

O(n2)

power of state-of-art complexity analyzers:
bubble sort: O(n2)

merge sort: O(n2) actually O(n log n)

quick sort: not analyzable actually O(n2)

Euclidean algorithm: O(n2) actually O(n)

5/14

Complexity Analysis

program
e.g. quick sort

COMPLEXITY TOOL complexity

O(n2)

power of state-of-art complexity analyzers:
bubble sort: O(n2)

merge sort: O(n2) actually O(n log n)

quick sort: not analyzable actually O(n2)

Euclidean algorithm: O(n2) actually O(n)

5/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?

YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:

deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:

deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?

NO! counterexample: (x, y) = (−1, 1)

Research Topics:

deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:

deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:

deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:
deformation, lemma discovery, ...

completion, counterexample generation, ...

6/14

Automated Reasoning{
x2y = 1

xy2 = x

}

1 x4 − y4 = 0 ?
YES! easy if you are aware of y2 = 1, x2 = y

2 x5 − y5 = 0 ?
NO! counterexample: (x, y) = (−1, 1)

Research Topics:
deformation, lemma discovery, ...
completion, counterexample generation, ...

6/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) =

(b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a),

(ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa),

(bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:

existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:
existence of solutions and solved forms, ...

computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:
existence of solutions and solved forms, ...
computation of solutions

how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Solving Equations
string equation ax = yb admits infinitely many solutions:

(x, y) = (b, a), (ab, aa), (bb, ab), (aab, aaa), . . .

how about general solved forms?

(x, y) = (zb, az) z: arbitrary string

Research Topics:
existence of solutions and solved forms, ...
computation of solutions
how about equation of programs? e.g., qsort([3, x, 1]) = [y, 3, 4]

7/14

Braid Theory
Notation

a : b :

Example

aa : ab : aba :

8/14

Equivalence of Braids
Definition

B = {aba ≈ bab}

≈

Q

aababab ≈B ababab?
9/14

1st Year

(C) Juraj Simlovic, CC BY-SA 3.0

10 —
11 —
12 —
1 soliving puzzles
2 deciding research theme
3 ...
4 hanami
5 ...
6 ...
7 tool competition ...
8 ...
9 domestric meeting 10/14

2nd Year
10 ...
11 ...
12 ...
1 paper writing
2 ...
3 domestic meeting
4 hanami
5 ...
6 ...
7 tool competition
8 ...
9 master’s defense

11/14

Seminars

group seminars 0.5–1 per week

individual meetings 0.5–1 per week

reading group 0.5–1 per week

joint group seminar 1 per month

12/14

Seminars

group seminars 0.5–1 per week

individual meetings 0.5–1 per week

reading group 0.5–1 per week

joint group seminar 1 per month

12/14

Seminars

group seminars 0.5–1 per week

individual meetings 0.5–1 per week

reading group 0.5–1 per week

joint group seminar 1 per month

12/14

Seminars

group seminars 0.5–1 per week

individual meetings 0.5–1 per week

reading group 0.5–1 per week

joint group seminar 1 per month

12/14

Research Collaborations

University of Innsbruck (Austria)

(C) Pahu, CC BY-SA 3.0

LORIA (France)

(C) François Bernardin, CC BY 3.0

13/14

Research Collaborations

University of Innsbruck (Austria)

(C) Pahu, CC BY-SA 3.0

LORIA (France)

(C) François Bernardin, CC BY 3.0

13/14

Our Laboratory

rooms: I-53, I-54

http://www.jaist.ac.jp/~hirokawa/laboratory/

join us if you are interested in
principle of computation
programming languages
logic puzzles
computer algebra and theorem provers

14/14

http://www.jaist.ac.jp/~hirokawa/laboratory/

