Hirokawa Laboratory: Theory of Computation

Nao Hirokawa, Associate Professor

1/14



Area: Term Rewriting

m Programming Languages

2/14



Area: Term Rewriting

m Programming Languages

m Automated Theorem Proving

2/14



Programming Languages

quick sort (in C)

void gsort(int *a, int n)

{

if (n <= 0) return;
int 1 =0, j=n-1, x=aln / 2];
do {
while (a[i] < x) i++;
while (x < aljl) j--—;
if (i <= j) swap(a, i++, j—-);
} while (i <= j);
gsort(a, j);
gsort(a + i, n - i);

3/14



Programming Languages

quick sort (in Haskell)

gsort [] = []

gsort (x : xs) =

gsort [y | y <= xs, y < x ] ++ [x] ++
gsort [y | y <= xs, y >= x ]

4/14



Programming Languages

quick sort (in Haskell)

gsort [] = []

gsort (x : xs) =

gsort [y | y <= xs, y < x ] ++ [x] ++
gsort [y | y <= xs, y >= x ]

m language features (pattern matching, A, laziness, ...)

4/14



Programming Languages

quick sort (in Haskell)

gsort [] = []

gsort (x : xs) =

gsort [y | y <= xs, y < x 1 ++ [x] ++
gsort [y | y <= xs, y >= x ]

m language features (pattern matching, A, laziness, ...)

m program transformation (optimization, parsing, ...)

4/14



Programming Languages

quick sort (in Haskell)

gsort [] = []

gsort (x : xs) =

gsort [y | y <= xs, y < x ] ++ [x] ++
gsort [y | y <= xs, y >= x ]

m language features (pattern matching, A, laziness, ...)
m program transformation (optimization, parsing, ...)

m program analysis (termination, complexity analysis, ...)

4/14



Programming Languages

quick sort (in Haskell)

gsort [] = []

gsort (x : xs) =

gsort [y | y <= xs, y < x ] ++ [x] ++
gsort [y | y <= xs, y >= x ]

m language features (pattern matching, A, laziness, ...)
m program transformation (optimization, parsing, ...)

m program analysis (termination, complexity analysis, ...)

4/14



Complexity Analysis

program *{ COMPLEXITY TOOL ]—» complexity

e.g. quick sort O(n2)

power of state-of-art complexity analyzers:

5/14



Complexity Analysis

program *{ COMPLEXITY TOOL ]—» complexity

e.g. quick sort O(n2)

power of state-of-art complexity analyzers:
m bubble sort: O(n?)

5/14



Complexity Analysis

program *{ COMPLEXITY TOOL ]—» complexity

e.g. quick sort O(nQ)

power of state-of-art complexity analyzers:
m bubble sort: O(n?)
m merge sort: O(n?) actually O(nlogn)

5/14



Complexity Analysis

program *{ COMPLEXITY TOOL ]—» complexity

e.g. quick sort O(nQ)

power of state-of-art complexity analyzers:
m bubble sort: O(n?)
m merge sort: O(n?) actually O(nlogn)

m quick sort: not analyzable actually O(n?)

5/14



Complexity Analysis

program *{ COMPLEXITY TOOL ]—» complexity

e.g. quick sort O(nQ)

power of state-of-art complexity analyzers:
m bubble sort: O(n?)
m merge sort: O(n?) actually O(nlogn)
m quick sort: not analyzable actually O(n?)

m Euclidean algorithm: O(n?) actually O(n)

5/14



Automated Reasoning

iy =1
vyt =x

M z*—y* =07

6/14



Automated Reasoning
iy =1
{ xy2 =
4 4
=y =07

YES! easy if you are aware of y* =1, 2* =y

6/14



Automated Reasoning
iy =1
{ xy2 =
4 4
=y =07

YES! easy if you are aware of y* =1, 2* =y

2] 2° —4° =07

6/14



Automated Reasoning
iy =1
{ xy2 =
4 4
=y =07

YES! easy if you are aware of y* =1, 2* =y

=y =07
NO! counterexample: (z,y) = (—1,1)

6/14



Automated Reasoning
iy =1
{ xy2 =
=yt =07

YES! easy if you are aware of y* =1, 2* =y

=y =07
NO! counterexample: (z,y) = (—1,1)

Research Topics:

6/14



Automated Reasoning
iy =1
{ :Uy2 =
=yt =07

YES! easy if you are aware of y* =1, 2* =y

=y =07
NO! counterexample: (z,y) = (—1,1)

Research Topics:

m deformation, lemma discovery, ...

6/14



Automated Reasoning
iy =1
{ xy2 =
=yt =07

YES! easy if you are aware of y* =1, 2* =y

=y =07
NO! counterexample: (z,y) = (—1,1)

Research Topics:
m deformation, lemma discovery, ...

m completion, counterexample generation, ...

6/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) =

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b, a),

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(x,y) ::(b7a)7(abvaa)v

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

7/14



Solving Equations
string equation ax = yb admits infinitely many solutions:
(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

how about general solved forms?

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

how about general solved forms?

(x,y) = (2b,az) z: arbitrary string

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

how about general solved forms?
(x,y) = (2b,az) z: arbitrary string

Research Topics:

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

how about general solved forms?
(x,y) = (2b,az) z: arbitrary string

Research Topics:

m existence of solutions and solved forms, ...

7/14



Solving Equations

string equation ax = yb admits infinitely many solutions:

(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..

how about general solved forms?
(x,y) = (2b,az) z: arbitrary string

Research Topics:
m existence of solutions and solved forms, ...

m computation of solutions

7/14



Solving Equations
string equation ax = yb admits infinitely many solutions:
(z,y) = (b,a), (ab, aa), (bb, ab), (aab, aaa), . ..
how about general solved forms?
(x,y) = (2b,az) z: arbitrary string

Research Topics:
m existence of solutions and solved forms, ...
m computation of solutions

m how about equation of programs?  e.g., gsort([3,x, 1]) = [y, 3, 4]

7/14



Braid Theory

R




Equivalence of Braids

DEFINITION

B = {aba ~ bab}

~~
Q
Y

Q
aababab ~z ababab?

9/14



=
N = O

O© o0 ~NOo 1 W N

1st Year

soliving puzzles
deciding research theme

hanami

tool competition ...

domestric meeting 10/14

(C) Juraj Slmlowc CC BY SA 3. 0



—_ =
N = O

O 00 ~NO O OWON =

2nd Year

paper writing

domestic meeting
hanami

tool competition

master’s defense



Seminars

m group seminars 0.5-1 per week

12/14



Seminars

B group seminars 0.5-1 per week

m individual meetings 0.5-1 per week

12/14



Seminars

B group seminars

m individual meetings

m reading group

12/14

0.5-1 per week

0.5-1 per week

0.5-1 per week



Seminars

B group seminars 0.5-1 per week
m individual meetings 0.5-1 per week
m reading group 0.5-1 per week

m joint group seminar 1 per month

12/14



Research Collaborations

m University of Innsbruck (Austria)

13/14



Research Collaborations

m University of Innsbruck (Austria)

m LORIA (France)

(C) Francois Bernardin, CC BY 3.0

13/14



Our Laboratory
m rooms: I-563, 1-54
m http://www.jaist.ac.jp/~hirokawa/laboratory/

join us if you are interested in
m principle of computation
m programming languages
m logic puzzles

m computer algebra and theorem provers

14/14


http://www.jaist.ac.jp/~hirokawa/laboratory/

