NO Termination proof of rtL-evnz.trs

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))
D(E, F(x, y)) → F(E, D(x, y))

The relative TRS consists of the following S rules:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(2) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → TOP(check(D(x, y)))
top(ok(U(x, y))) → top(CHECK(D(x, y)))
top(ok(U(x, y))) → top(check(D1(x, y)))
D(x, B) → U1(x, B)
F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F1(y, z))
D(O(x), F(y, z)) → F1(x, D(y, z))
D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(E, y)) → U1(x, F(E, y))
F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(E, y)) → U(x, F(E1, y))
D(E, F(x, y)) → F1(E, D(x, y))
D(E, F(x, y)) → F(E1, D(x, y))
D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN1(E1)
F(ok(x), y) → ok(F1(x, y))
O(ok(x)) → ok(O1(x))
U(ok(x), y) → ok(U1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))
U(O(x), y) → U1(x, y)
check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U1(x, y)
D(O(x), y) → D1(x, y)
check(O(x)) → O1(CHECK(x))
N(ok(x)) → ok(N1(x))
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(O(x)) → ok(O1(x))
check(F(x, y)) → F1(CHECK(x), y)
U(x, ok(y)) → ok(U1(x, y))
check(D(x, y)) → D1(x, CHECK(y))

(3) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
555 Lassos,
Result: This relative DT problem is equivalent to 558 subproblems.

(4) Complex Obligation (AND)

(5) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(6) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = 3·x2   
POL(N(x1)) = 1   
POL(N1(x1)) = 2 + 2·x1   
POL(O(x1)) = 0   
POL(O1(x1)) = 3   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 3 + x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(7) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(8) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(9) TRUE

(10) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(11) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(12) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(13) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 3·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(14) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(15) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(16) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(17) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(18) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(19) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))
D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 1 + x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(20) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(21) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(22) TRUE

(23) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → TOP(check(D(x, y)))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(24) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U(x, y))) → TOP(check(D(x, y)))

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(26) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = 2·x1   
POL(O(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 2·x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U(x, y))) → TOP(check(D(x, y)))

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(28) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule TOP(ok(U(x, y))) → TOP(check(D(x, y))) at position [0] we obtained the following new rules [LPAR04]:

TOP(ok(U(x0, x1))) → TOP(D(x0, check(x1))) → TOP(ok(U(x0, x1))) → TOP(D(x0, check(x1)))
TOP(ok(U(x0, x1))) → TOP(D(check(x0), x1)) → TOP(ok(U(x0, x1))) → TOP(D(check(x0), x1))
TOP(ok(U(ok(x0), x1))) → TOP(check(ok(D(x0, x1)))) → TOP(ok(U(ok(x0), x1))) → TOP(check(ok(D(x0, x1))))
TOP(ok(U(x0, B))) → TOP(check(U(x0, B))) → TOP(ok(U(x0, B))) → TOP(check(U(x0, B)))
TOP(ok(U(E, F(x0, x1)))) → TOP(check(F(E, D(x0, x1)))) → TOP(ok(U(E, F(x0, x1)))) → TOP(check(F(E, D(x0, x1))))
TOP(ok(U(N(x0), x1))) → TOP(check(D(x0, x1))) → TOP(ok(U(N(x0), x1))) → TOP(check(D(x0, x1)))
TOP(ok(U(N(x0), F(x1, x2)))) → TOP(check(F(x0, D(x1, x2)))) → TOP(ok(U(N(x0), F(x1, x2)))) → TOP(check(F(x0, D(x1, x2))))
TOP(ok(U(x0, ok(x1)))) → TOP(check(ok(D(x0, x1)))) → TOP(ok(U(x0, ok(x1)))) → TOP(check(ok(D(x0, x1))))

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U(x0, x1))) → TOP(D(x0, check(x1)))
TOP(ok(U(x0, x1))) → TOP(D(check(x0), x1))
TOP(ok(U(ok(x0), x1))) → TOP(check(ok(D(x0, x1))))
TOP(ok(U(x0, B))) → TOP(check(U(x0, B)))
TOP(ok(U(E, F(x0, x1)))) → TOP(check(F(E, D(x0, x1))))
TOP(ok(U(N(x0), x1))) → TOP(check(D(x0, x1)))
TOP(ok(U(N(x0), F(x1, x2)))) → TOP(check(F(x0, D(x1, x2))))
TOP(ok(U(x0, ok(x1)))) → TOP(check(ok(D(x0, x1))))

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U(x0, x1))) → TOP(D(x0, check(x1)))
TOP(ok(U(x0, x1))) → TOP(D(check(x0), x1))
TOP(ok(U(x0, B))) → TOP(check(U(x0, B)))
TOP(ok(U(E, F(x0, x1)))) → TOP(check(F(E, D(x0, x1))))
TOP(ok(U(N(x0), x1))) → TOP(check(D(x0, x1)))
TOP(ok(U(N(x0), F(x1, x2)))) → TOP(check(F(x0, D(x1, x2))))

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(32) NonTerminationLoopProof (COMPLETE transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = TOP(D(check(O(x')), B)) evaluates to t =TOP(D(check(O(x')), B))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

TOP(D(check(O(x')), B))TOP(D(ok(O(x')), B))
with rule check(O(x'')) → ok(O(x'')) at position [0,0] and matcher [x'' / x']

TOP(D(ok(O(x')), B))TOP(U(ok(O(x')), B))
with rule D(x'', B) → U(x'', B) at position [0] and matcher [x'' / ok(O(x'))]

TOP(U(ok(O(x')), B))TOP(ok(U(O(x'), B)))
with rule U(ok(x), y) → ok(U(x, y)) at position [0] and matcher [x / O(x'), y / B]

TOP(ok(U(O(x'), B)))TOP(D(check(O(x')), B))
with rule TOP(ok(U(x0, x1))) → TOP(D(check(x0), x1))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(33) NO

(34) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(35) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(36) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(37) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(38) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(39) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(40) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(41) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(42) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(43) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(44) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(45) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(46) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(47) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(48) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(49) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(50) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(51) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(52) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(53) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(54) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(55) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(56) TRUE

(57) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(58) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(59) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(60) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(61) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(62) TRUE

(63) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(64) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(65) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(66) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(67) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(68) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(69) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(70) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(71) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(72) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(73) Complex Obligation (AND)

(74) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(75) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + x2   
POL(D1(x1, x2)) = 1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 2·x12   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(76) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(77) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(78) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(79) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(80) TRUE

(81) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(82) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + x2   
POL(D1(x1, x2)) = 1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 2·x12   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(83) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(84) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(85) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(86) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(87) TRUE

(88) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(89) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + x2   
POL(D1(x1, x2)) = 1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 2·x12   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(90) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(91) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(92) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(93) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(94) TRUE

(95) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(96) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(97) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 3   
POL(E1) = 1   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 3   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(98) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(99) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(100) TRUE

(101) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(102) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(103) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(104) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(105) TRUE

(106) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(107) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(108) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(109) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 1 + x1·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2   
POL(N1(x1)) = 0   
POL(O(x1)) = 0   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 3   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(110) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(111) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1 + x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(112) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(113) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(114) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(115) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:O_1 = N_1 = top_1 = E = check_1 = B = U_2 = F_2 = ok_1 = F^1_2 = 0 D_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(B) = 0   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 2 + x1 + 2·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = 2 + x1   
POL(O(x1)) = 2 + x1   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(check(x1)) = 1 + x1   
POL(ok(x1)) = 2·x1   
POL(top(x1)) = 2·x1   

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(U0(N0(y), z)) → F1(z)

The TRS R consists of the following rules:

F0(ok0(x), y) → ok0(F0(x, y))
top0(ok0(U0(x, y))) → top0(check0(D0(x, y)))
O0(ok0(x)) → ok0(O0(x))
F0(x, U0(N0(y), z)) → U0(x, F0(y, z))
U0(ok0(x), y) → ok0(U0(x, y))
check0(U0(x, y)) → U0(check0(x), y)
D0(ok0(x), y) → ok0(D0(x, y))
U0(O0(x), y) → U0(x, y)
U0(N0(x), y) → U0(x, y)
F0(x, U0(O0(y), z)) → U0(x, F0(y, z))
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F0(x, y)) → F0(check0(x), y)
check0(D0(x, y)) → D0(x, check0(y))
F0(x, ok0(y)) → ok0(F0(x, y))
E0N0(E0)
D0(x, B0) → U0(x, B0)
D0(E0, F0(x, y)) → F0(E0, D0(x, y))
check0(N0(x)) → N0(check0(x))
check0(D0(x, y)) → D0(check0(x), y)
check0(F0(x, y)) → F0(x, check0(y))
check0(U0(x, y)) → U0(x, check0(y))
D0(O0(x), y) → D0(x, y)
check0(O0(x)) → O0(check0(x))
D0(N0(x), y) → D0(x, y)
D0(N0(x), F0(y, z)) → F0(x, D0(y, z))
D0(x, ok0(y)) → ok0(D0(x, y))
D0(O0(x), F0(y, z)) → F0(x, D0(y, z))
U0(x, ok0(y)) → ok0(U0(x, y))
F0(x, U0(E0, y)) → U0(x, F0(E0, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(117) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U0(O0(x), y) → U0(x, y)
F0(x, U0(O0(y), z)) → U0(x, F0(y, z))
D0(O0(x), y) → D0(x, y)
D0(O0(x), F0(y, z)) → F0(x, D0(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 1   
POL(D0(x1, x2)) = x1 + x2   
POL(E0) = 2   
POL(F0(x1, x2)) = 1 + x1 + x2   
POL(F1(x1)) = 2·x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 2 + x1   
POL(U0(x1, x2)) = x1 + x2   
POL(check0(x1)) = 2 + x1   
POL(ok0(x1)) = 2 + x1   
POL(top0(x1)) = x1   

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(U0(N0(y), z)) → F1(z)

The TRS R consists of the following rules:

F0(ok0(x), y) → ok0(F0(x, y))
top0(ok0(U0(x, y))) → top0(check0(D0(x, y)))
O0(ok0(x)) → ok0(O0(x))
F0(x, U0(N0(y), z)) → U0(x, F0(y, z))
U0(ok0(x), y) → ok0(U0(x, y))
check0(U0(x, y)) → U0(check0(x), y)
D0(ok0(x), y) → ok0(D0(x, y))
U0(N0(x), y) → U0(x, y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F0(x, y)) → F0(check0(x), y)
check0(D0(x, y)) → D0(x, check0(y))
F0(x, ok0(y)) → ok0(F0(x, y))
E0N0(E0)
D0(x, B0) → U0(x, B0)
D0(E0, F0(x, y)) → F0(E0, D0(x, y))
check0(N0(x)) → N0(check0(x))
check0(D0(x, y)) → D0(check0(x), y)
check0(F0(x, y)) → F0(x, check0(y))
check0(U0(x, y)) → U0(x, check0(y))
check0(O0(x)) → O0(check0(x))
D0(N0(x), y) → D0(x, y)
D0(N0(x), F0(y, z)) → F0(x, D0(y, z))
D0(x, ok0(y)) → ok0(D0(x, y))
U0(x, ok0(y)) → ok0(U0(x, y))
F0(x, U0(E0, y)) → U0(x, F0(E0, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(119) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(U0(N0(y), z)) → F1(z)


Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D0(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(E0) = 2   
POL(F0(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1)) = x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 2 + 2·x1   
POL(U0(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check0(x1)) = x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = x1   

(120) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F0(ok0(x), y) → ok0(F0(x, y))
top0(ok0(U0(x, y))) → top0(check0(D0(x, y)))
O0(ok0(x)) → ok0(O0(x))
F0(x, U0(N0(y), z)) → U0(x, F0(y, z))
U0(ok0(x), y) → ok0(U0(x, y))
check0(U0(x, y)) → U0(check0(x), y)
D0(ok0(x), y) → ok0(D0(x, y))
U0(N0(x), y) → U0(x, y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F0(x, y)) → F0(check0(x), y)
check0(D0(x, y)) → D0(x, check0(y))
F0(x, ok0(y)) → ok0(F0(x, y))
E0N0(E0)
D0(x, B0) → U0(x, B0)
D0(E0, F0(x, y)) → F0(E0, D0(x, y))
check0(N0(x)) → N0(check0(x))
check0(D0(x, y)) → D0(check0(x), y)
check0(F0(x, y)) → F0(x, check0(y))
check0(U0(x, y)) → U0(x, check0(y))
check0(O0(x)) → O0(check0(x))
D0(N0(x), y) → D0(x, y)
D0(N0(x), F0(y, z)) → F0(x, D0(y, z))
D0(x, ok0(y)) → ok0(D0(x, y))
U0(x, ok0(y)) → ok0(U0(x, y))
F0(x, U0(E0, y)) → U0(x, F0(E0, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(121) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(122) YES

(123) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(124) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(125) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(126) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(127) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(128) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(129) Obligation:

Relative ADP Problem with
absolute ADPs:

D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(130) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(131) TRUE

(132) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(133) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(134) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(135) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(136) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(137) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(138) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(139) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(140) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(141) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(142) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(143) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(144) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(145) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(146) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(147) TRUE

(148) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(149) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(150) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(151) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(152) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(153) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(154) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 2·x1   

(155) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(156) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(157) TRUE

(158) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(159) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(160) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(161) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(162) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(163) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(164) TRUE

(165) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(166) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(167) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(168) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(169) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(170) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(171) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(172) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(173) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(174) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(175) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(176) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(177) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(178) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(179) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(180) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(181) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x1   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(182) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(183) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(184) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(185) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(186) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(187) TRUE

(188) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(189) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(190) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(191) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(192) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(193) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(194) TRUE

(195) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(196) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(197) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(198) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(199) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(200) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(201) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(202) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(203) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(204) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(205) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(206) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(207) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(208) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(209) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(210) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(211) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(212) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(213) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(214) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(215) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(216) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(217) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(218) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(219) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(220) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(222) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(N(x), F(y, z)) → D1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(223) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(224) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(225) YES

(226) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(227) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 3·x1 + x2   
POL(D1(x1, x2)) = 1 + 2·x1   
POL(E) = 1   
POL(E1) = 0   
POL(F(x1, x2)) = 3 + 3·x1 + x2   
POL(F1(x1, x2)) = 3 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + x2   
POL(U1(x1, x2)) = 1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(228) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(229) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(230) TRUE

(231) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(232) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(233) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(234) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(235) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(236) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(237) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(238) TRUE

(239) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(240) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(241) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(242) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 1 + 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(243) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(244) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(245) TRUE

(246) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(247) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(248) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 2   
POL(top(x1)) = 0   

(249) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(250) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(251) TRUE

(252) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(253) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(254) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(255) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(256) TRUE

(257) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(258) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(259) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(260) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(261) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(262) TRUE

(263) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(264) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(265) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(266) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(267) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(268) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(269) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(270) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(271) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(272) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(273) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(274) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(275) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(276) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(277) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(278) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(279) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(280) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(281) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(282) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(283) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(284) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(285) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(286) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(287) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(288) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(289) TRUE

(290) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(291) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(292) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(293) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(294) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(295) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(296) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(297) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(298) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(299) TRUE

(300) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(301) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(302) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(303) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = x1 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(304) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(305) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(306) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(307) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(308) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(309) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(310) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(311) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(312) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(313) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(314) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(315) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(316) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(317) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(318) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(319) TRUE

(320) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(321) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(322) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(323) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 2·x1 + x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(324) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(325) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(326) TRUE

(327) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(328) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(329) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(330) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(331) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(332) TRUE

(333) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(334) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(335) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(336) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(337) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(338) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(339) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(340) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(341) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(342) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(343) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(344) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(345) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(346) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(347) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(348) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(349) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 2·x1 + x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 1 + x1 + x12   
POL(U(x1, x2)) = 2 + 2·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 2   
POL(top(x1)) = 0   

(350) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(351) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(352) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(353) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(354) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(355) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(356) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(357) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(358) YES

(359) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(360) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(361) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(362) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(363) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(364) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(365) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(366) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(367) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(368) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(369) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(370) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(371) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(372) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(373) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 3·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(374) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(375) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(376) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(377) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(378) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 2   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(379) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(380) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(381) TRUE

(382) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(383) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(384) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(385) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(386) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(387) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(388) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(389) TRUE

(390) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(391) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(392) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(393) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(394) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(395) TRUE

(396) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(397) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(398) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(399) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(400) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 3 + 2·x1   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 1   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(401) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(402) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(403) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(404) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + 2·x1   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(405) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(406) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:O_1 = N_1 = E = top_1 = check_1 = B = U_2 = 0 F_2 = 0 F^1_2 = 0 ok_1 = D_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
F1(x1, x2)  =  F1(x2)
U(x1, x2)  =  U(x2)
N(x1)  =  x1
F(x1, x2)  =  x2
O(x1)  =  x1
D(x1, x2)  =  D
B  =  B
E  =  E

Recursive path order with status [RPO].
Quasi-Precedence:

[D, E] > [U1, B]

Status:
F^11: [1]
U1: [1]
D: []
B: multiset
E: multiset

(407) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(U(z)) → F1(z)

The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
Dok0(D)
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D) → D
F(ok0(y)) → ok0(F(y))
E0N0(E0)
DU(B0)
DF(D)
check0(N0(x)) → N0(check0(x))
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
DD
check0(O0(x)) → O0(check0(x))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(408) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

check0(O0(x)) → ok0(O0(x))
check0(O0(x)) → O0(check0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D) = 0   
POL(E0) = 1   
POL(F(x1)) = 2·x1   
POL(F1(x1)) = x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 1 + 2·x1   
POL(U(x1)) = x1   
POL(check0(x1)) = 2·x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = x1   

(409) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(U(z)) → F1(z)

The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
Dok0(D)
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(F(y)) → F(y)
check0(D) → D
F(ok0(y)) → ok0(F(y))
E0N0(E0)
DU(B0)
DF(D)
check0(N0(x)) → N0(check0(x))
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
DD
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(410) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(U(z)) → F1(z)


Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D) = 1   
POL(E0) = 2   
POL(F(x1)) = x1   
POL(F1(x1)) = 2·x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 1 + 2·x1   
POL(U(x1)) = 1 + x1   
POL(check0(x1)) = x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = 2·x1   

(411) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
Dok0(D)
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(F(y)) → F(y)
check0(D) → D
F(ok0(y)) → ok0(F(y))
E0N0(E0)
DU(B0)
DF(D)
check0(N0(x)) → N0(check0(x))
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
DD
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(412) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(413) YES

(414) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(415) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(416) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 3·x1   

(417) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(418) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(419) TRUE

(420) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(421) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(422) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(423) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(424) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(425) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(426) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(427) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(428) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(429) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(430) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(431) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(432) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(433) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(434) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(435) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(436) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(437) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(438) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(439) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(440) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = x1 + x1·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(441) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(442) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(443) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(444) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x1 + x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(445) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(446) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(447) TRUE

(448) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(449) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(450) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(451) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(452) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(453) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(454) TRUE

(455) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(456) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(457) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(458) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x1   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(459) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(460) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(461) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(462) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(x, B) → U(x, B)

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 3·x1 + x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(463) Obligation:

Relative ADP Problem with
absolute ADPs:

D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(464) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(465) TRUE

(466) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(467) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(468) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(469) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(470) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(471) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(472) TRUE

(473) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(474) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(475) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(476) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(477) TRUE

(478) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(479) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(480) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(481) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(482) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(483) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 3·x1 + x1·x2   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(484) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(485) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(486) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(487) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(488) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(489) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(490) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(491) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = 3   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(492) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(493) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(494) TRUE

(495) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(496) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(497) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(498) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(499) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(500) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(501) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(502) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(503) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(504) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 3·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(505) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(506) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(507) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(508) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + x1·x2   
POL(N(x1)) = 1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 1 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(509) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(510) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(511) YES

(512) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(513) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(514) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(515) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(516) TRUE

(517) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(518) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(519) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(520) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(521) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(522) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(523) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(524) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(525) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(526) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(527) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(528) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(529) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 1 + x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(530) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(531) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 2 + 2·x1 + x2   
POL(U1(x1, x2)) = x1·x2 + 2·x2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 2   
POL(top(x1)) = 0   

(532) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(533) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1 + x1 + x12   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(534) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(535) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(536) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(537) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(538) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(539) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(N(x), F(y, z)) → D1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(540) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(541) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(542) YES

(543) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(544) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(545) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(546) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(547) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(548) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(549) TRUE

(550) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(551) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + x2   
POL(F1(x1, x2)) = 1 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(552) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(553) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(554) TRUE

(555) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(556) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(557) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(558) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(559) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(560) TRUE

(561) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(562) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(563) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(564) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(565) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(566) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(567) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(568) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(569) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(570) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(571) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(572) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(573) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(574) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(575) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(576) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(577) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = x1 + x1·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(578) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(579) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(580) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(581) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x1 + x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(582) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(583) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(584) TRUE

(585) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(586) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(587) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(588) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(589) TRUE

(590) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(591) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(592) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(593) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(594) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(595) TRUE

(596) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(597) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(598) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1 + x1   
POL(U(x1, x2)) = 3 + x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(599) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(600) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(601) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(602) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(603) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(604) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:O_1 = N_1 = E = top_1 = check_1 = B = D^1_2 = 0 U_2 = 0 F_2 = 0 ok_1 = D_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
D1(x1, x2)  =  D1(x2)
N(x1)  =  N(x1)
F(x1, x2)  =  F(x2)
U(x1, x2)  =  x2
O(x1)  =  O(x1)
D(x1, x2)  =  D(x2)
B  =  B
E  =  E

Recursive path order with status [RPO].
Quasi-Precedence:

N1 > [F1, O1, D1] > B
E > [F1, O1, D1] > B

Status:
D^11: [1]
N1: multiset
F1: [1]
O1: multiset
D1: [1]
B: multiset
E: multiset

(605) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(F(z)) → D1(z)

The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(606) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(F(z)) → D1(z)


Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D(x1)) = x1   
POL(D1(x1)) = x1   
POL(E0) = 2   
POL(F(x1)) = 2 + 2·x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 2 + x1   
POL(U(x1)) = x1   
POL(check0(x1)) = x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = x1   

(607) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(608) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(609) YES

(610) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(611) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(612) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(613) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(614) TRUE

(615) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(616) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(617) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(618) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 4 subproblems.

(619) Complex Obligation (AND)

(620) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(621) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(622) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(623) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(624) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(625) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(626) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(627) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(628) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(629) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(630) TRUE

(631) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(632) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(633) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(634) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(635) TRUE

(636) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(637) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(638) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(639) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(640) TRUE

(641) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(642) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(643) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(644) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(645) TRUE

(646) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(647) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(648) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(649) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(650) TRUE

(651) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(652) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(653) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(654) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(655) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(656) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(657) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(658) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(659) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(660) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(661) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(662) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(663) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(664) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(665) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(666) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(667) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(668) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(669) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(670) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(671) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(672) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(673) YES

(674) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(675) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(676) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(677) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(678) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(679) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(680) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + 2·x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + x1·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(681) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(682) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(683) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(684) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(685) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(686) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = x1 + 2·x2   
POL(E) = 1   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(687) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(688) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(N(y), z)) → F1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 1   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(E) = 2   
POL(F(x1, x2)) = 1 + x1 + x2   
POL(F1(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + x1   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = x1   

(689) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(690) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(691) YES

(692) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(693) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(694) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(695) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(696) TRUE

(697) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(698) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(699) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(700) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(701) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(702) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(703) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(704) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(705) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(706) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(707) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(708) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(709) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(710) TRUE

(711) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(712) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(713) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(714) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(715) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x2   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(716) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(717) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(718) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(719) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(720) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(721) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 3 + x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(722) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(723) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2 + 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(724) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(725) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3 + 2·x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(726) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(727) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(728) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(729) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(730) YES

(731) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(732) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(733) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(734) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(735) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(736) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

U(O(x), y) → U(x, y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 0   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(737) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(738) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 0   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3 + 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 1 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(739) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(740) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(741) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(742) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(743) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(744) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(745) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(746) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 3·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(747) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(748) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(749) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(750) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(751) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(752) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(753) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(754) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(755) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(756) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(757) TRUE

(758) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(759) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(760) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(761) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(762) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(763) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(764) TRUE

(765) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(766) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(767) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(768) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(769) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(770) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(771) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(772) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(773) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(774) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(775) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(776) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = 0   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(777) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(778) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(779) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(780) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x1 + x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = x1 + 3·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(781) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(782) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(783) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(784) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(785) YES

(786) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(787) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(788) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(789) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(790) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(791) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(792) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(793) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(794) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(795) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(796) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 1 + x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(797) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(798) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = x1 + x1·x2   
POL(N(x1)) = 2   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(799) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(800) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(801) TRUE

(802) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(803) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(804) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(805) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(806) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(807) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(808) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 4 subproblems.

(809) Complex Obligation (AND)

(810) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(811) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(812) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(813) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(814) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(815) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(816) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(817) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 1   
POL(N1(x1)) = x1 + x12   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(818) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(819) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(820) TRUE

(821) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(822) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(823) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(824) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(825) TRUE

(826) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(827) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(828) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(829) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(830) TRUE

(831) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(832) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(833) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(834) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(835) TRUE

(836) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(837) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(838) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(839) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(840) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(841) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(842) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(843) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(844) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(845) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(846) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + 2·x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + x1·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(847) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(848) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(849) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(850) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(851) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(852) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = x1 + 2·x2   
POL(E) = 1   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(853) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(854) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(N(y), z)) → F1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 1   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(E) = 2   
POL(F(x1, x2)) = 1 + x1 + x2   
POL(F1(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + x1   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = x1   

(855) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(856) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(857) YES

(858) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(859) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(860) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(861) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(862) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(863) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(864) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(865) TRUE

(866) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(867) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(868) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(869) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(870) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(871) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(872) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(873) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(874) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(875) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(876) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(877) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(878) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(879) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(880) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(881) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 1 + x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(882) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(883) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = x1 + x1·x2   
POL(N(x1)) = 2   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(884) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(885) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(886) TRUE

(887) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(888) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 2·x1   

(889) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(890) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(891) TRUE

(892) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(893) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(894) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(895) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + x2   
POL(F1(x1, x2)) = 2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x1   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(896) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(897) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(898) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(899) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(900) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(901) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(902) TRUE

(903) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(904) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(905) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(906) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(907) TRUE

(908) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(909) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(910) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(911) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(912) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(913) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U1(x, B)

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + 2·x2   
POL(F1(x1, x2)) = 2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(914) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U1(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(915) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(916) TRUE

(917) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(918) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(919) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(920) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 0   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(921) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(922) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 0   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(923) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(924) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(925) TRUE

(926) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(927) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(928) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(929) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(930) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(931) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(932) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(933) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(934) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x1·x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(935) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(936) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 1   
POL(N1(x1)) = x1   
POL(O(x1)) = 0   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(937) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(938) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(939) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(940) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(941) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(942) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(943) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + 2·x1 + x2   
POL(D1(x1, x2)) = 3   
POL(E) = 0   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 2·x1 + x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 3   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(944) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(945) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(946) TRUE

(947) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(948) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(949) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(950) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(951) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(952) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(953) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(954) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(955) TRUE

(956) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(957) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(958) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(959) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(960) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(961) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(962) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(963) TRUE

(964) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(965) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(966) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(967) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(968) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(969) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(970) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(971) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(972) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(973) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(974) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 3·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(975) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(976) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x1 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(977) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(978) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(979) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(980) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(981) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(982) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(983) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(984) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(985) TRUE

(986) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(987) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(988) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(989) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(990) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(991) TRUE

(992) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(993) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(994) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(995) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(996) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(997) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(998) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(999) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1000) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1001) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1002) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1003) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1004) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1005) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1006) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1007) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1008) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1009) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1010) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1011) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1012) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1013) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1014) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1015) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1016) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1017) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 1 + x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1018) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1019) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:O_1 = N_1 = E = top_1 = check_1 = B = D^1_2 = 0 U_2 = 0 F_2 = 0 ok_1 = D_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
D1(x1, x2)  =  D1(x2)
E  =  E
F(x1, x2)  =  F(x2)
U(x1, x2)  =  U(x2)
N(x1)  =  x1
O(x1)  =  x1
D(x1, x2)  =  D(x2)
B  =  B

Recursive path order with status [RPO].
Quasi-Precedence:

D1 > [F1, U1] > E
D1 > B

Status:
D^11: [1]
E: multiset
F1: [1]
U1: [1]
D1: [1]
B: multiset

(1020) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(F(y)) → D1(y)

The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1021) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(F(y)) → D1(y)


Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D(x1)) = x1   
POL(D1(x1)) = x1   
POL(E0) = 2   
POL(F(x1)) = 2 + 2·x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 2 + x1   
POL(U(x1)) = x1   
POL(check0(x1)) = x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = x1   

(1022) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1023) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1024) YES

(1025) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1026) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1027) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1028) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1029) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1030) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1031) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1032) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1033) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1034) TRUE

(1035) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1036) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 3·x1   

(1037) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1038) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1039) TRUE

(1040) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1041) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1042) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1043) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1044) TRUE

(1045) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1046) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1047) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U1(x, F(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1048) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1049) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1050) TRUE

(1051) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1052) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1053) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1054) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1055) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1056) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1057) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1058) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1059) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1060) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(1061) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1062) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1063) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1064) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1065) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1066) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1067) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1068) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1069) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1070) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1071) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1072) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1073) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1074) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1075) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x1·x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1076) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1077) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 1   
POL(N1(x1)) = x1   
POL(O(x1)) = 0   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1078) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1079) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1080) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1081) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 1 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1082) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1083) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1084) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1085) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1086) TRUE

(1087) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1088) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1089) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1090) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1091) Obligation:

Relative ADP Problem with
absolute ADPs:

D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1092) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1093) TRUE

(1094) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1095) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1096) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1097) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1098) TRUE

(1099) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1100) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1101) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1102) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1103) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1104) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1105) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1106) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 2·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1107) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1108) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1109) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1110) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1111) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1112) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1113) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1114) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x1·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + x1 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1115) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1116) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1117) TRUE

(1118) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1119) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1120) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1121) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1122) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = x1   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(1123) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1124) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1125) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1126) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1127) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1128) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1129) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1130) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(1131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(O(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1132) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(O(x), F(y, z)) → D1(y, z)

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(1133) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1134) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1135) YES

(1136) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1137) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1138) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1139) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1140) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1141) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1142) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1143) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x1 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1144) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1145) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1146) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1147) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1 + x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1148) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1149) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1150) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1151) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1152) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1153) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1154) TRUE

(1155) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1156) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1157) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1158) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1159) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1160) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1161) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1162) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + x2   
POL(F1(x1, x2)) = x1·x2 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1163) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1164) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 0   
POL(N1(x1)) = x12   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1165) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1166) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 1 + x1   
POL(D(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1167) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1168) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1169) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1170) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 1 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1 + 2·x1 + x12   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1171) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1172) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = 1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1173) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1174) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(1175) YES

(1176) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1177) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 2   
POL(top(x1)) = 0   

(1178) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1179) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1180) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1181) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1182) TRUE

(1183) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1184) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1185) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1186) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1187) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1188) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1189) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1190) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1191) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1192) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1193) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1194) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(1195) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1196) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(1197) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1198) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(N(x), F(y, z)) → D1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(1199) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1200) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1201) YES

(1202) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1203) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1204) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1205) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1206) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1207) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1208) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1209) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1210) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + 3·x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1211) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1212) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1213) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1214) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 3 + x1   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1215) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1216) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 2·x2   
POL(F1(x1, x2)) = x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 3 + 3·x1   
POL(U(x1, x2)) = 2 + x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1217) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1218) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1219) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1220) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1221) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1222) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1223) TRUE

(1224) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1225) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1226) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1227) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1228) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1229) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1230) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1231) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1232) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1233) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x1 + 2·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1234) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1235) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1236) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1237) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1238) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1239) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1240) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1241) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x1 + x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1242) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1243) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1244) TRUE

(1245) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1246) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1247) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1248) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + 3·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 2   
POL(top(x1)) = 0   

(1249) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1250) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1251) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1252) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1253) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1254) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1255) TRUE

(1256) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1257) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1258) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1259) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1260) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1261) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1262) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1263) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1264) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1265) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1266) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1267) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1268) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1269) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 3·x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1270) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1271) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1272) TRUE

(1273) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1274) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1275) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1276) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1277) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1278) TRUE

(1279) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1280) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1281) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1282) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 3·x1   

(1283) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1284) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(1285) Complex Obligation (AND)

(1286) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1287) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1288) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1289) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1290) TRUE

(1291) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1292) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1293) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1294) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1295) TRUE

(1296) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1297) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1298) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1299) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1300) TRUE

(1301) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1302) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1303) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1304) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1305) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 3·x1   

(1306) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1307) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1308) TRUE

(1309) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1310) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1311) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1312) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1313) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1314) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1315) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1316) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1317) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = x1 + x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1318) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1319) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1320) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1321) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + x1·x2   
POL(N(x1)) = 1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 1 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1322) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1323) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(1324) YES

(1325) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1326) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1327) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1328) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1329) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1330) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1331) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1332) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1333) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1334) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1335) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1336) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1337) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1338) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1339) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1340) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1341) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1342) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U1(x, F(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(U1(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1343) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1344) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1345) TRUE

(1346) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1347) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1348) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1349) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1350) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1351) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1352) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1353) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1354) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1355) TRUE

(1356) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1357) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1358) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1359) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1360) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1361) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1362) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 3 + x1 + x12   
POL(U(x1, x2)) = 2 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1363) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1364) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1365) TRUE

(1366) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1367) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 3·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1368) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1369) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1370) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1371) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1372) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1373) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1374) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1375) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1376) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1377) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(1378) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(E, F(x, y)) → D1(x, y)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1379) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(E, F(x, y)) → D1(x, y)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(1380) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1381) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1382) YES

(1383) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1384) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1385) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

U(O(x), y) → U(x, y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1 + 3·x1 + 3·x12   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(1386) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1387) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 3 + 2·x1   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1388) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1389) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1390) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1391) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + x1 + x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1392) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1393) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1394) TRUE

(1395) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1396) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1397) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1398) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1399) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1400) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1401) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1402) TRUE

(1403) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1404) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1405) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1406) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1407) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1408) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1409) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1410) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1411) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1412) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1413) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1414) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1415) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3 + x1 + x2   
POL(D1(x1, x2)) = 3   
POL(E) = 1   
POL(E1) = 0   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 3   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1416) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1417) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(1418) Complex Obligation (AND)

(1419) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1420) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + x1 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1421) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1422) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1423) TRUE

(1424) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1425) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + x1 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1426) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1427) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1428) TRUE

(1429) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1430) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 3 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + x1 + 2·x2   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1431) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1432) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1433) TRUE

(1434) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1435) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1436) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1437) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1438) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1439) TRUE

(1440) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1441) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1442) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1443) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1444) TRUE

(1445) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1446) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1447) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1448) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1449) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1450) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1451) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1452) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1453) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1454) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1455) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1456) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1457) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1458) TRUE

(1459) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1460) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1461) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1462) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1463) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1464) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1465) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1466) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1467) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1468) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1469) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1470) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1471) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1472) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = x1 + x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1473) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1474) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1475) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1476) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + x1·x2   
POL(N(x1)) = 1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 1 + x1 + x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1477) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1478) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(1479) YES

(1480) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1481) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1482) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 3   
POL(E1) = 1   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 3   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1483) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1484) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1485) TRUE

(1486) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1487) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1488) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1489) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1490) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1491) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 1 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 1 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1492) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1493) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(1494) Complex Obligation (AND)

(1495) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1496) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1497) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1498) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1499) TRUE

(1500) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1501) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1502) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1503) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1504) TRUE

(1505) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1506) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1507) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1508) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1509) TRUE

(1510) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1511) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1512) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1513) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1514) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1515) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1516) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2·x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1517) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1518) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1519) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1520) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1521) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1522) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3 + 3·x1 + 3·x12   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 2 + x1   
POL(top(x1)) = 0   

(1523) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1524) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1525) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1526) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1527) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1528) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1529) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1530) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1531) TRUE

(1532) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1533) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1534) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1535) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1536) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1537) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1538) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1539) TRUE

(1540) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1541) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1542) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1543) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1544) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1545) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1546) TRUE

(1547) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1548) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1549) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1550) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1551) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1552) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1553) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1554) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1555) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1556) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1557) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1558) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1559) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1560) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1561) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1562) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1563) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1564) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 2·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1565) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1566) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x2   
POL(F1(x1, x2)) = x1·x2   
POL(N(x1)) = 3   
POL(N1(x1)) = 2   
POL(O(x1)) = 0   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = x1   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1567) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1568) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1569) TRUE

(1570) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1571) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1572) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1573) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1574) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1575) TRUE

(1576) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1577) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1578) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1579) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1580) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1581) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1582) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1583) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1584) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1585) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1586) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1587) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1588) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 2·x1   

(1589) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1590) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1591) TRUE

(1592) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1593) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1594) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1595) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1596) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1597) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1598) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1599) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(1600) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(O(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1601) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(O(x), F(y, z)) → D1(y, z)

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = x1   

(1602) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1603) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1604) YES

(1605) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1606) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1607) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3   
POL(O1(x1)) = 0   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1608) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1609) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1610) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1611) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1612) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1613) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1614) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1615) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1616) TRUE

(1617) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1618) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1619) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1620) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1621) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1622) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1623) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1624) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1625) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1626) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(1627) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(O(y), z)) → F1(y, z)

The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1628) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(O(y), z)) → F1(y, z)

Strictly oriented rules of the TRS R:

U(O(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2 + x1 + 2·x2   
POL(E) = 0   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = 2·x1   
POL(O(x1)) = 1 + 2·x1   
POL(U(x1, x2)) = 2 + x1 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 2·x1   

(1629) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1630) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1631) YES

(1632) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1633) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1634) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

U(O(x), y) → U(x, y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 0   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1635) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1636) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1637) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1638) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1639) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1640) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1641) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1642) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1643) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E1, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 1   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1644) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1645) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1646) TRUE

(1647) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1648) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1649) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1650) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1651) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1652) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2 + x1 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1653) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1654) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1655) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1656) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2·x1 + x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1657) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1658) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1659) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1660) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1661) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1662) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1663) TRUE

(1664) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1665) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1666) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1667) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1668) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1669) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1670) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1671) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 1 + x1 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x12   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 2·x1 + 2·x1·x2 + x2   
POL(check(x1)) = 3 + 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1672) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1673) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1674) TRUE

(1675) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1676) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1677) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1678) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1679) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(1680) Complex Obligation (AND)

(1681) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1682) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1683) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1684) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1685) TRUE

(1686) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1687) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1688) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1689) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1690) TRUE

(1691) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1692) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D1(x, CHECK(y))
D(O(x), y) → D(x, y)
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 1 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1693) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1694) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1695) TRUE

(1696) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1697) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1698) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 3·x1   

(1699) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1700) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.

(1701) Complex Obligation (AND)

(1702) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1703) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1704) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1705) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1706) TRUE

(1707) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1708) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1709) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1710) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1711) TRUE

(1712) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1713) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = x12   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1714) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
D(O(x), y) → D(x, y)
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1715) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1716) TRUE

(1717) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1718) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1719) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1720) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1721) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1722) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1723) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1724) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1725) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1726) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1727) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1728) TRUE

(1729) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1730) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1731) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1732) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1733) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1734) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1735) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1736) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2 + x12   
POL(TOP(x1)) = x12   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1737) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1738) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 3 + x1 + x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1739) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1740) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1741) TRUE

(1742) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1743) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1744) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1745) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1746) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1747) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1748) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1749) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1750) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1751) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1752) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1753) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

U(O(x), y) → U(x, y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
F(ok(x), y) → ok(F1(x, y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1 + 3·x1 + 3·x12   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 3 + x1   
POL(top(x1)) = 0   

(1754) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1755) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1756) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1757) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1758) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 2 + 2·x12   
POL(U(x1, x2)) = 0   
POL(U1(x1, x2)) = 2 + 2·x1   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1759) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1760) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 2 + x1 + 3·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2 + x1 + x12   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1761) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1762) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 4 subproblems.

(1763) Complex Obligation (AND)

(1764) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1765) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:O_1 = N_1 = E = top_1 = check_1 = B = D^1_2 = 0 U_2 = 0 F_2 = 0 ok_1 = D_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
D1(x1, x2)  =  D1(x2)
E  =  E
F(x1, x2)  =  F(x2)
U(x1, x2)  =  U(x2)
N(x1)  =  x1
O(x1)  =  x1
D(x1, x2)  =  D(x2)
B  =  B

Recursive path order with status [RPO].
Quasi-Precedence:

D1 > [F1, U1] > E
D1 > B

Status:
D^11: [1]
E: multiset
F1: [1]
U1: [1]
D1: [1]
B: multiset

(1766) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(F(y)) → D1(y)

The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1767) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(F(y)) → D1(y)


Used ordering: Polynomial interpretation [POLO]:

POL(B0) = 0   
POL(D(x1)) = x1   
POL(D1(x1)) = x1   
POL(E0) = 2   
POL(F(x1)) = 2 + 2·x1   
POL(N0(x1)) = x1   
POL(O0(x1)) = 2 + x1   
POL(U(x1)) = x1   
POL(check0(x1)) = x1   
POL(ok0(x1)) = x1   
POL(top0(x1)) = x1   

(1768) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

F(y) → ok0(F(y))
top0(ok0(U(y))) → top0(check0(D(y)))
O0(ok0(x)) → ok0(O0(x))
F(U(z)) → U(F(z))
U(y) → ok0(U(y))
check0(U(y)) → U(y)
D(y) → ok0(D(y))
U(y) → U(y)
N0(ok0(x)) → ok0(N0(x))
check0(O0(x)) → ok0(O0(x))
check0(F(y)) → F(y)
check0(D(y)) → D(check0(y))
F(ok0(y)) → ok0(F(y))
E0N0(E0)
D(B0) → U(B0)
D(F(y)) → F(D(y))
check0(N0(x)) → N0(check0(x))
check0(D(y)) → D(y)
check0(F(y)) → F(check0(y))
check0(U(y)) → U(check0(y))
D(y) → D(y)
check0(O0(x)) → O0(check0(x))
D(ok0(y)) → ok0(D(y))
U(ok0(y)) → ok0(U(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(1769) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(1770) YES

(1771) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1772) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1773) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1774) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1775) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1776) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3·x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1777) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1778) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1779) TRUE

(1780) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1781) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1782) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1783) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1784) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1785) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3·x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1786) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1787) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1788) TRUE

(1789) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1790) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 2   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = 3 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1791) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1792) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(E, F(x, y)) → F(E, D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x2   
POL(D1(x1, x2)) = 1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 2   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3 + x2   
POL(U1(x1, x2)) = 2 + x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1793) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1794) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 3·x1   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1795) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1796) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1797) TRUE

(1798) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1799) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1800) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2 + 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1801) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1802) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1803) TRUE

(1804) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1805) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
D(x, ok(y)) → ok(D(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 3 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 2·x12   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1806) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1807) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1808) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 2 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1809) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1810) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1811) TRUE

(1812) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1813) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1814) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 1   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1815) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1816) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 3·x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 3·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 3   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1817) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1818) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1819) TRUE

(1820) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1821) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U1(x, F(E, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 3 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(U1(x1, x2)) = 3·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1822) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1823) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1824) TRUE

(1825) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1826) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1827) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1828) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1829) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1830) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1831) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1832) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1833) TRUE

(1834) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1835) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1836) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F1(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
F(ok(x), y) → ok(F1(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1837) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
check(N(x)) → N1(CHECK(x))
F(ok(x), y) → ok(F1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 3·x1   
POL(D(x1, x2)) = 1 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + 3·x2   
POL(U1(x1, x2)) = 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1838) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U1(x, F(E, y))
top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F1(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
EN(E)
F(ok(x), y) → ok(F1(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1839) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1840) TRUE

(1841) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1842) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1843) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1844) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1845) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1846) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1847) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1848) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
U(O(x), y) → U(x, y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
D(ok(x), y) → ok(D1(x, y))
check(U(x, y)) → U1(CHECK(x), y)
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 1 + 3·x1 + x2   
POL(D1(x1, x2)) = 1 + 2·x1   
POL(E) = 1   
POL(E1) = 0   
POL(F(x1, x2)) = 3 + 3·x1 + x2   
POL(F1(x1, x2)) = 3 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + x2   
POL(U1(x1, x2)) = 1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1849) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1850) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1851) TRUE

(1852) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1853) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1854) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1855) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2 + x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1856) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1857) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1858) TRUE

(1859) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1860) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1861) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1862) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1863) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1864) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1865) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1866) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1867) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 3   
POL(top(x1)) = 0   

(1868) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1869) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + x2   
POL(F1(x1, x2)) = x1·x2 + 3·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1870) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1871) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 0   
POL(N1(x1)) = x12   
POL(O(x1)) = x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1872) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1873) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(O(x), y) → D1(x, y)


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 1 + x1   
POL(D(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + x1 + x2   
POL(U1(x1, x2)) = 2·x1·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 1 + x1   
POL(top(x1)) = 0   

(1874) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1875) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1876) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1877) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1878) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1879) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U1(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1880) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1881) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U(x, check(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 2 + x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1882) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1883) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1884) TRUE

(1885) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U1(x, F(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1886) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U1(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1887) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1888) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1889) TRUE

(1890) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1891) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1892) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1893) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1894) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1895) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1896) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1897) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 2·x2   
POL(F1(x1, x2)) = 3·x1 + x1·x2   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x12   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1898) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1899) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(O(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = x2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 1 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1900) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1901) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + x1·x2 + x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1902) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1903) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 2 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(U1(x1, x2)) = 2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1904) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1905) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 2 + 3·x2   
POL(D1(x1, x2)) = 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x2   
POL(F1(x1, x2)) = 2 + 2·x1   
POL(N(x1)) = 3   
POL(N1(x1)) = 2 + x1   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 1 + 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1906) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1907) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1908) TRUE

(1909) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1910) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1911) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1912) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = 2·x1   
POL(O(x1)) = 2 + 3·x1   
POL(O1(x1)) = 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = x1   
POL(ok(x1)) = 1   
POL(top(x1)) = 0   

(1913) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))

(1914) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1915) TRUE

(1916) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1917) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(O(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + x1 + 3·x2   
POL(F1(x1, x2)) = 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 3·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1918) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(N(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1919) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1920) TRUE

(1921) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1922) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1923) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1924) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

Relative ADPs:

check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
D(ok(x), y) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 3   
POL(E1) = 0   
POL(F(x1, x2)) = 2 + 3·x1 + x2   
POL(F1(x1, x2)) = 1 + 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 3·x1 + x2   
POL(U1(x1, x2)) = 2·x1   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1925) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(ok(x), y) → ok(D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, ok(y)) → ok(D(x, y))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1926) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1927) TRUE

(1928) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1929) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1930) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1931) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1932) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1933) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F(E1, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1934) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1935) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(F(x, y)) → F1(x, CHECK(y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = x1   
POL(N(x1)) = 3·x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(O1(x1)) = x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(U1(x1, x2)) = 0   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1936) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1937) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(1938) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))

(1939) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = 1 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 0   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + 2·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = 0   
POL(top(x1)) = 0   

(1940) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1941) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 0   
POL(D(x1, x2)) = 1 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 2 + x12   
POL(O(x1)) = 3 + x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 1   
POL(U1(x1, x2)) = 2·x1·x2 + 2·x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1942) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
D(N(x), y) → D1(x, y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(1943) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(x, B) → U(x, B)

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
N(ok(x)) → ok(N(x))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2   
POL(D(x1, x2)) = x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 2   
POL(E1) = 3   
POL(F(x1, x2)) = x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = x1   
POL(N1(x1)) = 2   
POL(O(x1)) = 2 + 2·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + 2·x2   
POL(U1(x1, x2)) = 2 + 2·x1 + 2·x1·x2 + 2·x2   
POL(check(x1)) = 2·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1944) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1945) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))
D(E, F(x, y)) → F(E, D(x, y))

Relative ADPs:

F(x, ok(y)) → ok(F(x, y))
F(ok(x), y) → ok(F(x, y))
EN(E)
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
U(O(x), y) → U(x, y)
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(O(x)) → O(check(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

Relative ADPs:

D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + x1   
POL(D(x1, x2)) = 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 3·x1·x2   
POL(N(x1)) = x1   
POL(N1(x1)) = x1   
POL(O(x1)) = 1 + 3·x1   
POL(O1(x1)) = 2   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1 + 3·x2   
POL(U1(x1, x2)) = 2 + 2·x2   
POL(check(x1)) = 3·x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1946) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
D(N(x), y) → D1(x, y)
U(N(x), y) → U(x, y)
N(ok(x)) → ok(N(x))
check(F(x, y)) → F(check(x), y)
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
check(N(x)) → N(check(x))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1947) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1948) TRUE

(1949) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1950) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1951) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(x, ok(y)) → ok(D(x, y))
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1952) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(N(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1953) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1954) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(O(x), F(y, z)) → F1(x, D(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1955) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1956) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
F(x, ok(y)) → ok(F(x, y))
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(O(x)) → O1(CHECK(x))
U(O(x), y) → U(x, y)
check(U(x, y)) → U1(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
U(N(x), y) → U(x, y)
D(O(x), y) → D(x, y)
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U1(x, B)

Relative ADPs:

check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
check(F(x, y)) → F1(x, CHECK(y))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = x1   
POL(D(x1, x2)) = 3 + x1 + 3·x2   
POL(D1(x1, x2)) = x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 2 + x1 + 2·x2   
POL(F1(x1, x2)) = 2   
POL(N(x1)) = 2·x1   
POL(N1(x1)) = 0   
POL(O(x1)) = 3 + 2·x1   
POL(O1(x1)) = 0   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3 + x1 + 2·x2   
POL(U1(x1, x2)) = x2   
POL(check(x1)) = x1   
POL(ok(x1)) = x1   
POL(top(x1)) = 0   

(1957) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(x, B) → U1(x, B)

and relative ADPs:

F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
F(x, U(N(y), z)) → U(x, F(y, z))
U(ok(x), y) → ok(U(x, y))
check(U(x, y)) → U(check(x), y)
D(ok(x), y) → ok(D(x, y))
U(O(x), y) → U(x, y)
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
F(x, U(O(y), z)) → U(x, F(y, z))
N(ok(x)) → ok(N(x))
check(O(x)) → ok(O(x))
check(D(x, y)) → D(x, check(y))
F(x, ok(y)) → ok(F(x, y))
EN(E)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
check(D(x, y)) → D(check(x), y)
D(x, ok(y)) → ok(D1(x, y))
check(U(x, y)) → U(x, check(y))
D(O(x), y) → D(x, y)
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
U(x, ok(y)) → ok(U(x, y))
F(x, U(E, y)) → U(x, F(E, y))

(1958) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(1959) TRUE

(1960) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1961) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
D(E, F(x, y)) → F1(E, D(x, y))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
D(N(x), y) → D(x, y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1962) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))
top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(x, B) → U(x, B)
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1963) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))

(1964) Obligation:

Relative ADP Problem with
absolute ADPs:

top(ok(U(x, y))) → top(check(D(x, y)))
F(x, U(N(y), z)) → U(x, F(y, z))
F(x, U(O(y), z)) → U(x, F(y, z))
D(x, B) → U1(x, B)
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(E, F(x, y)) → F(E, D(x, y))
F(x, U(E, y)) → U(x, F(E, y))

and relative ADPs:

F(x, ok(y)) → ok(F(x, y))
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
F(ok(x), y) → ok(F(x, y))
O(ok(x)) → ok(O(x))
D(O(x), y) → D1(x, y)
U(ok(x), y) → ok(U(x, y))
D(ok(x), y) → ok(D1(x, y))
check(F(x, y)) → F1(x, CHECK(y))
U(O(x), y) → U(x, y)
check(O(x)) → O1(CHECK(x))
check(F(x, y)) → F1(CHECK(x), y)
D(N(x), y) → D1(x, y)
check(U(x, y)) → U1(x, CHECK(y))
D(x, ok(y)) → ok(D1(x, y))
check(N(x)) → N1(CHECK(x))
U(N(x), y) → U(x, y)
check(D(x, y)) → D1(x, CHECK(y))
N(ok(x)) → ok(N(x))
check(U(x, y)) → U1(CHECK(x), y)
check(O(x)) → ok(O(x))
U(x, ok(y)) → ok(U(x, y))