YES We show the termination of the relative TRS R/S: R: eq(|0|(),|0|()) -> true() eq(|0|(),s(x)) -> false() eq(s(x),|0|()) -> false() eq(s(x),s(y)) -> eq(x,y) le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) app(nil(),y) -> y app(add(n,x),y) -> add(n,app(x,y)) min(add(n,nil())) -> n min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) if_min(true(),add(n,add(m,x))) -> min(add(n,x)) if_min(false(),add(n,add(m,x))) -> min(add(m,x)) rm(n,nil()) -> nil() rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) if_rm(true(),n,add(m,x)) -> rm(n,x) if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) minsort(nil(),nil()) -> nil() minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: eq#(s(x),s(y)) -> eq#(x,y) p2: le#(s(x),s(y)) -> le#(x,y) p3: app#(add(n,x),y) -> app#(x,y) p4: min#(add(n,add(m,x))) -> if_min#(le(n,m),add(n,add(m,x))) p5: min#(add(n,add(m,x))) -> le#(n,m) p6: if_min#(true(),add(n,add(m,x))) -> min#(add(n,x)) p7: if_min#(false(),add(n,add(m,x))) -> min#(add(m,x)) p8: rm#(n,add(m,x)) -> if_rm#(eq(n,m),n,add(m,x)) p9: rm#(n,add(m,x)) -> eq#(n,m) p10: if_rm#(true(),n,add(m,x)) -> rm#(n,x) p11: if_rm#(false(),n,add(m,x)) -> rm#(n,x) p12: minsort#(add(n,x),y) -> if_minsort#(eq(n,min(add(n,x))),add(n,x),y) p13: minsort#(add(n,x),y) -> eq#(n,min(add(n,x))) p14: minsort#(add(n,x),y) -> min#(add(n,x)) p15: if_minsort#(true(),add(n,x),y) -> minsort#(app(rm(n,x),y),nil()) p16: if_minsort#(true(),add(n,x),y) -> app#(rm(n,x),y) p17: if_minsort#(true(),add(n,x),y) -> rm#(n,x) p18: if_minsort#(false(),add(n,x),y) -> minsort#(x,add(n,y)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p12, p15, p18} {p8, p10, p11} {p1} {p4, p6, p7} {p2} {p3} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minsort#(false(),add(n,x),y) -> minsort#(x,add(n,y)) p2: minsort#(add(n,x),y) -> if_minsort#(eq(n,min(add(n,x))),add(n,x),y) p3: if_minsort#(true(),add(n,x),y) -> minsort#(app(rm(n,x),y),nil()) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: if_minsort#_A(x1,x2,x3) = x2 + x3 + 6 false_A() = 1 add_A(x1,x2) = x1 + x2 + 5 minsort#_A(x1,x2) = x1 + x2 + 6 eq_A(x1,x2) = 4 min_A(x1) = x1 + 1 true_A() = 3 app_A(x1,x2) = x1 + x2 rm_A(x1,x2) = x2 nil_A() = 0 |0|_A() = 2 s_A(x1) = x1 le_A(x1,x2) = 12 if_min_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 2 if_minsort_A(x1,x2,x3) = x2 + x3 + 2 rand_A(x1) = x1 + 1 precedence: min = app = rm > nil = |0| = le = if_min = if_rm > false = add = eq = minsort = if_minsort > rand > if_minsort# = minsort# = true = s partial status: pi(if_minsort#) = [] pi(false) = [] pi(add) = [] pi(minsort#) = [] pi(eq) = [] pi(min) = [1] pi(true) = [] pi(app) = [1, 2] pi(rm) = [2] pi(nil) = [] pi(|0|) = [] pi(s) = [] pi(le) = [] pi(if_min) = [2] pi(if_rm) = [3] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minsort#(false(),add(n,x),y) -> minsort#(x,add(n,y)) p2: minsort#(add(n,x),y) -> if_minsort#(eq(n,min(add(n,x))),add(n,x),y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minsort#(false(),add(n,x),y) -> minsort#(x,add(n,y)) p2: minsort#(add(n,x),y) -> if_minsort#(eq(n,min(add(n,x))),add(n,x),y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: if_minsort#_A(x1,x2,x3) = x2 false_A() = 2 add_A(x1,x2) = x1 + x2 + 4 minsort#_A(x1,x2) = x1 eq_A(x1,x2) = x1 + 3 min_A(x1) = x1 + 1 |0|_A() = 1 true_A() = 2 s_A(x1) = x1 le_A(x1,x2) = x1 + x2 + 5 app_A(x1,x2) = x1 + x2 nil_A() = 0 if_min_A(x1,x2) = x2 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 3 if_minsort_A(x1,x2,x3) = x2 + x3 + 3 rand_A(x1) = x1 + 1 precedence: false = eq = |0| = s = le = app = nil = if_min = rm > min = if_rm = minsort = if_minsort = rand > add > if_minsort# > minsort# = true partial status: pi(if_minsort#) = [] pi(false) = [] pi(add) = [2] pi(minsort#) = [1] pi(eq) = [] pi(min) = [1] pi(|0|) = [] pi(true) = [] pi(s) = [1] pi(le) = [] pi(app) = [1, 2] pi(nil) = [] pi(if_min) = [] pi(rm) = [] pi(if_rm) = [3] pi(minsort) = [] pi(if_minsort) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minsort#(add(n,x),y) -> if_minsort#(eq(n,min(add(n,x))),add(n,x),y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_rm#(false(),n,add(m,x)) -> rm#(n,x) p2: rm#(n,add(m,x)) -> if_rm#(eq(n,m),n,add(m,x)) p3: if_rm#(true(),n,add(m,x)) -> rm#(n,x) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: if_rm#_A(x1,x2,x3) = x3 false_A() = 1 add_A(x1,x2) = x1 + x2 + 3 rm#_A(x1,x2) = x2 + 2 eq_A(x1,x2) = x1 + x2 + 6 true_A() = 1 |0|_A() = 2 s_A(x1) = x1 le_A(x1,x2) = 2 app_A(x1,x2) = x1 + x2 nil_A() = 0 min_A(x1) = x1 + 2 if_min_A(x1,x2) = x2 + 1 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 4 if_minsort_A(x1,x2,x3) = x2 + x3 + 4 rand_A(x1) = x1 + 1 precedence: if_rm# = rm# = |0| = s = app = nil = rm = rand > min = minsort = if_minsort > false = add = eq = true = le = if_min = if_rm partial status: pi(if_rm#) = [] pi(false) = [] pi(add) = [] pi(rm#) = [] pi(eq) = [] pi(true) = [] pi(|0|) = [] pi(s) = [] pi(le) = [] pi(app) = [] pi(nil) = [] pi(min) = [1] pi(if_min) = [2] pi(rm) = [] pi(if_rm) = [] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: rm#(n,add(m,x)) -> if_rm#(eq(n,m),n,add(m,x)) p2: if_rm#(true(),n,add(m,x)) -> rm#(n,x) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: rm#(n,add(m,x)) -> if_rm#(eq(n,m),n,add(m,x)) p2: if_rm#(true(),n,add(m,x)) -> rm#(n,x) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: rm#_A(x1,x2) = x2 + 2 add_A(x1,x2) = x1 + x2 + 3 if_rm#_A(x1,x2,x3) = x3 + 1 eq_A(x1,x2) = x1 + 2 true_A() = 0 |0|_A() = 2 s_A(x1) = x1 false_A() = 1 le_A(x1,x2) = x2 app_A(x1,x2) = x1 + x2 nil_A() = 0 min_A(x1) = x1 + 1 if_min_A(x1,x2) = x2 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 if_minsort_A(x1,x2,x3) = x2 + x3 rand_A(x1) = x1 + 1 precedence: eq = app = if_min > rm > add = min = if_rm = minsort = if_minsort > rm# > if_rm# > |0| = nil > false = rand > true = s = le partial status: pi(rm#) = [2] pi(add) = [1, 2] pi(if_rm#) = [3] pi(eq) = [] pi(true) = [] pi(|0|) = [] pi(s) = [] pi(false) = [] pi(le) = [] pi(app) = [1, 2] pi(nil) = [] pi(min) = [1] pi(if_min) = [2] pi(rm) = [] pi(if_rm) = [3] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_rm#(true(),n,add(m,x)) -> rm#(n,x) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: eq#(s(x),s(y)) -> eq#(x,y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 eq_A(x1,x2) = x1 + x2 + 5 |0|_A() = 2 true_A() = 1 false_A() = 3 le_A(x1,x2) = x1 + x2 + 2 app_A(x1,x2) = x1 + x2 nil_A() = 0 add_A(x1,x2) = x1 + x2 + 4 min_A(x1) = x1 + 3 if_min_A(x1,x2) = x2 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 5 if_minsort_A(x1,x2,x3) = x2 + x3 + 5 rand_A(x1) = x1 + 1 precedence: eq# = s = |0| = true = false = nil = min = if_min = rm = if_rm = minsort = if_minsort = rand > eq = le = app = add partial status: pi(eq#) = [2] pi(s) = [1] pi(eq) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(le) = [] pi(app) = [1, 2] pi(nil) = [] pi(add) = [1] pi(min) = [1] pi(if_min) = [2] pi(rm) = [2] pi(if_rm) = [3] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_min#(false(),add(n,add(m,x))) -> min#(add(m,x)) p2: min#(add(n,add(m,x))) -> if_min#(le(n,m),add(n,add(m,x))) p3: if_min#(true(),add(n,add(m,x))) -> min#(add(n,x)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: if_min#_A(x1,x2) = x2 + 1 false_A() = 3 add_A(x1,x2) = x1 + x2 + 4 min#_A(x1) = x1 + 2 le_A(x1,x2) = x1 + x2 + 8 true_A() = 7 eq_A(x1,x2) = x1 + x2 + 5 |0|_A() = 8 s_A(x1) = x1 app_A(x1,x2) = x1 + x2 nil_A() = 0 min_A(x1) = x1 + 4 if_min_A(x1,x2) = x2 + 1 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 6 if_minsort_A(x1,x2,x3) = x2 + x3 + 6 rand_A(x1) = x1 + 1 precedence: if_min# = false > add = min# = le = true = eq = |0| = app = nil = rm = minsort = if_minsort > min = rand > if_min = if_rm > s partial status: pi(if_min#) = [2] pi(false) = [] pi(add) = [] pi(min#) = [] pi(le) = [] pi(true) = [] pi(eq) = [] pi(|0|) = [] pi(s) = [] pi(app) = [1, 2] pi(nil) = [] pi(min) = [1] pi(if_min) = [2] pi(rm) = [2] pi(if_rm) = [3] pi(minsort) = [1, 2] pi(if_minsort) = [2, 3] pi(rand) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: min#(add(n,add(m,x))) -> if_min#(le(n,m),add(n,add(m,x))) p2: if_min#(true(),add(n,add(m,x))) -> min#(add(n,x)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: min#(add(n,add(m,x))) -> if_min#(le(n,m),add(n,add(m,x))) p2: if_min#(true(),add(n,add(m,x))) -> min#(add(n,x)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: min#_A(x1) = x1 + 2 add_A(x1,x2) = x1 + x2 + 5 if_min#_A(x1,x2) = x2 + 1 le_A(x1,x2) = x1 + x2 + 13 true_A() = 6 eq_A(x1,x2) = x1 + x2 + 6 |0|_A() = 7 s_A(x1) = x1 false_A() = 1 app_A(x1,x2) = x1 + x2 nil_A() = 0 min_A(x1) = x1 + 4 if_min_A(x1,x2) = x2 + 1 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 7 if_minsort_A(x1,x2,x3) = x2 + x3 + 7 rand_A(x1) = x1 + 1 precedence: min# > le = nil = min = rm = if_rm = minsort = if_minsort > if_min = rand > add = if_min# = true = eq = |0| = s = false = app partial status: pi(min#) = [] pi(add) = [1] pi(if_min#) = [2] pi(le) = [] pi(true) = [] pi(eq) = [] pi(|0|) = [] pi(s) = [] pi(false) = [] pi(app) = [1, 2] pi(nil) = [] pi(min) = [1] pi(if_min) = [2] pi(rm) = [] pi(if_rm) = [] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_min#(true(),add(n,add(m,x))) -> min#(add(n,x)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: le#_A(x1,x2) = x2 s_A(x1) = x1 eq_A(x1,x2) = x1 + x2 + 4 |0|_A() = 3 true_A() = 1 false_A() = 4 le_A(x1,x2) = x2 + 2 app_A(x1,x2) = x1 + x2 nil_A() = 0 add_A(x1,x2) = x1 + x2 + 3 min_A(x1) = x1 + 2 if_min_A(x1,x2) = x2 + 1 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 7 if_minsort_A(x1,x2,x3) = x2 + x3 + 7 rand_A(x1) = x1 + 1 precedence: app > s = rm = if_rm = minsort = if_minsort > le = min > eq = if_min > le# > true = rand > |0| = false = nil > add partial status: pi(le#) = [2] pi(s) = [1] pi(eq) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(le) = [2] pi(app) = [2] pi(nil) = [] pi(add) = [1, 2] pi(min) = [1] pi(if_min) = [2] pi(rm) = [] pi(if_rm) = [] pi(minsort) = [1] pi(if_minsort) = [2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(add(n,x),y) -> app#(x,y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: min(add(n,nil())) -> n r11: min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) r12: if_min(true(),add(n,add(m,x))) -> min(add(n,x)) r13: if_min(false(),add(n,add(m,x))) -> min(add(m,x)) r14: rm(n,nil()) -> nil() r15: rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) r16: if_rm(true(),n,add(m,x)) -> rm(n,x) r17: if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) r18: minsort(nil(),nil()) -> nil() r19: minsort(add(n,x),y) -> if_minsort(eq(n,min(add(n,x))),add(n,x),y) r20: if_minsort(true(),add(n,x),y) -> add(n,minsort(app(rm(n,x),y),nil())) r21: if_minsort(false(),add(n,x),y) -> minsort(x,add(n,y)) r22: rand(x) -> x r23: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: app#_A(x1,x2) = x1 + x2 + 5 add_A(x1,x2) = x1 + x2 + 4 eq_A(x1,x2) = x1 + 4 |0|_A() = 2 true_A() = 1 s_A(x1) = x1 false_A() = 3 le_A(x1,x2) = x1 + x2 + 11 app_A(x1,x2) = x1 + x2 nil_A() = 0 min_A(x1) = x1 + 2 if_min_A(x1,x2) = x2 + 1 rm_A(x1,x2) = x2 if_rm_A(x1,x2,x3) = x3 minsort_A(x1,x2) = x1 + x2 + 5 if_minsort_A(x1,x2,x3) = x2 + x3 + 5 rand_A(x1) = x1 + 1 precedence: app# = |0| = true = s = le = app = min = rm = rand > false = nil = if_rm > if_min = minsort = if_minsort > add > eq partial status: pi(app#) = [] pi(add) = [2] pi(eq) = [1] pi(|0|) = [] pi(true) = [] pi(s) = [] pi(false) = [] pi(le) = [] pi(app) = [] pi(nil) = [] pi(min) = [] pi(if_min) = [2] pi(rm) = [] pi(if_rm) = [] pi(minsort) = [] pi(if_minsort) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.