YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),s(y)) -> minus#(x,y) p3: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p4: mod#(s(x),s(y)) -> le#(y,x) p5: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p6: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) r11: rand(x) -> x r12: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p3, p5} {p1} {p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) r11: rand(x) -> x r12: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: if_mod#_A(x1,x2,x3) = x2 true_A() = 0 s_A(x1) = x1 mod#_A(x1,x2) = x1 minus_A(x1,x2) = x1 le_A(x1,x2) = x1 + 3 |0|_A() = 1 false_A() = 2 mod_A(x1,x2) = x1 + x2 + 1 if_mod_A(x1,x2,x3) = x2 + x3 + 1 rand_A(x1) = x1 + 1 precedence: |0| = mod = if_mod = rand > s > minus > mod# > if_mod# = true > le = false partial status: pi(if_mod#) = [2] pi(true) = [] pi(s) = [1] pi(mod#) = [1] pi(minus) = [1] pi(le) = [] pi(|0|) = [] pi(false) = [] pi(mod) = [1, 2] pi(if_mod) = [2, 3] pi(rand) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) r11: rand(x) -> x r12: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) r11: rand(x) -> x r12: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: le#_A(x1,x2) = x2 s_A(x1) = x1 le_A(x1,x2) = x1 + x2 + 1 |0|_A() = 2 true_A() = 1 false_A() = 1 minus_A(x1,x2) = x1 mod_A(x1,x2) = x1 + x2 + 2 if_mod_A(x1,x2,x3) = x2 + x3 + 2 rand_A(x1) = x1 + 1 precedence: le = |0| = false > true = minus = mod = if_mod > le# = s > rand partial status: pi(le#) = [2] pi(s) = [1] pi(le) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(mod) = [] pi(if_mod) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) r11: rand(x) -> x r12: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: minus#_A(x1,x2) = x2 s_A(x1) = x1 le_A(x1,x2) = x1 + 4 |0|_A() = 2 true_A() = 1 false_A() = 3 minus_A(x1,x2) = x1 mod_A(x1,x2) = x1 + x2 + 5 if_mod_A(x1,x2,x3) = x2 + x3 + 5 rand_A(x1) = x1 + 1 precedence: minus# = s = le = |0| = true = false = minus = mod = if_mod > rand partial status: pi(minus#) = [2] pi(s) = [1] pi(le) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(mod) = [1, 2] pi(if_mod) = [2, 3] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.