YES We show the termination of the relative TRS R/S: R: minus(x,o()) -> x minus(s(x),s(y)) -> minus(x,y) div(|0|(),s(y)) -> |0|() div(s(x),s(y)) -> s(div(minus(x,y),s(y))) divL(x,nil()) -> x divL(x,cons(y,xs)) -> divL(div(x,y),xs) S: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) p3: div#(s(x),s(y)) -> minus#(x,y) p4: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) p5: divL#(x,cons(y,xs)) -> div#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The estimated dependency graph contains the following SCCs: {p4} {p2} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: divL#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (2,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,5) div_A(x1,x2) = x1 + x2 + (1,4) minus_A(x1,x2) = x1 o_A() = (1,1) s_A(x1) = x1 + (2,1) |0|_A() = (1,2) divL_A(x1,x2) = x1 + x2 + (2,2) nil_A() = (1,1) precedence: divL# = cons = div = minus = o = s = |0| = divL = nil partial status: pi(divL#) = [] pi(cons) = [] pi(div) = [] pi(minus) = [] pi(o) = [] pi(s) = [] pi(|0|) = [] pi(divL) = [] pi(nil) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: divL#_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) cons_A(x1,x2) = (0,0) div_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (2,2) minus_A(x1,x2) = ((1,0),(0,0)) x1 + (1,5) o_A() = (1,1) s_A(x1) = ((1,0),(0,0)) x1 + (0,2) |0|_A() = (0,1) divL_A(x1,x2) = x2 nil_A() = (1,1) precedence: minus = |0| > o > div = divL > s > nil > divL# = cons partial status: pi(divL#) = [1] pi(cons) = [] pi(div) = [] pi(minus) = [] pi(o) = [] pi(s) = [] pi(|0|) = [] pi(divL) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: div#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,0) s_A(x1) = ((1,0),(0,0)) x1 + (1,2) minus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 o_A() = (1,1) div_A(x1,x2) = ((1,0),(0,0)) x1 + (2,3) |0|_A() = (2,4) divL_A(x1,x2) = x1 + x2 + (2,1) nil_A() = (1,1) cons_A(x1,x2) = ((1,0),(1,1)) x2 + (3,5) precedence: minus > o = div = |0| = divL > nil = cons > div# = s partial status: pi(div#) = [] pi(s) = [] pi(minus) = [1] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] pi(cons) = [2] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: div#_A(x1,x2) = (1,1) s_A(x1) = (1,1) minus_A(x1,x2) = ((1,0),(0,0)) x1 + (5,2) o_A() = (0,1) div_A(x1,x2) = (4,1) |0|_A() = (5,2) divL_A(x1,x2) = x2 + (1,1) nil_A() = (1,1) cons_A(x1,x2) = ((1,0),(1,1)) x2 + (2,2) precedence: div# = minus = o = nil > |0| > s = div = divL = cons partial status: pi(div#) = [] pi(s) = [] pi(minus) = [] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,2) s_A(x1) = ((1,0),(0,0)) x1 + (2,1) minus_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (0,4) o_A() = (1,1) div_A(x1,x2) = ((1,0),(0,0)) x1 + (1,3) |0|_A() = (3,2) divL_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (1,1) nil_A() = (1,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (3,5) precedence: minus = div = cons > s > minus# > o = |0| = nil > divL partial status: pi(minus#) = [] pi(s) = [] pi(minus) = [] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [1] pi(nil) = [] pi(cons) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = (1,2) s_A(x1) = (0,1) minus_A(x1,x2) = (1,2) o_A() = (1,1) div_A(x1,x2) = (2,0) |0|_A() = (1,2) divL_A(x1,x2) = (0,0) nil_A() = (0,0) cons_A(x1,x2) = (3,0) precedence: o > minus# > nil > cons > s = minus = div > |0| = divL partial status: pi(minus#) = [] pi(s) = [] pi(minus) = [] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [] pi(nil) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.