YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(|0|(),y) -> |0|() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus(true(),s(x),y) -> |0|() if_minus(false(),s(x),y) -> s(minus(x,y)) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) p3: minus#(s(x),y) -> le#(s(x),y) p4: if_minus#(false(),s(x),y) -> minus#(x,y) p5: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p6: mod#(s(x),s(y)) -> le#(y,x) p7: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p8: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p5, p7} {p2, p4} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_mod#_A(x1,x2,x3) = x2 + ((1,0),(1,0)) x3 + (1,1) true_A() = (0,1) s_A(x1) = x1 + (0,7) mod#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (1,2) minus_A(x1,x2) = x1 + (0,4) le_A(x1,x2) = (0,3) |0|_A() = (0,2) false_A() = (0,3) if_minus_A(x1,x2,x3) = x1 + x2 + (0,1) mod_A(x1,x2) = x1 + (0,4) if_mod_A(x1,x2,x3) = x2 + (0,4) rand_A(x1) = ((1,0),(0,0)) x1 + (1,8) precedence: minus > s = |0| = if_minus = mod = if_mod > le = false > true > mod# > if_mod# > rand partial status: pi(if_mod#) = [2] pi(true) = [] pi(s) = [] pi(mod#) = [] pi(minus) = [1] pi(le) = [] pi(|0|) = [] pi(false) = [] pi(if_minus) = [1, 2] pi(mod) = [] pi(if_mod) = [] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_mod#_A(x1,x2,x3) = (4,1) true_A() = (6,3) s_A(x1) = (5,2) mod#_A(x1,x2) = (3,4) minus_A(x1,x2) = (8,4) le_A(x1,x2) = (2,1) |0|_A() = (0,0) false_A() = (1,1) if_minus_A(x1,x2,x3) = x2 + (2,1) mod_A(x1,x2) = (7,5) if_mod_A(x1,x2,x3) = (7,5) rand_A(x1) = (5,3) precedence: rand > minus = if_minus > |0| > le > true > if_mod# = s = mod = if_mod > mod# > false partial status: pi(if_mod#) = [] pi(true) = [] pi(s) = [] pi(mod#) = [] pi(minus) = [] pi(le) = [] pi(|0|) = [] pi(false) = [] pi(if_minus) = [2] pi(mod) = [] pi(if_mod) = [] pi(rand) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_minus#_A(x1,x2,x3) = ((1,0),(1,0)) x1 + x2 + ((1,0),(1,1)) x3 + (1,1) false_A() = (2,4) s_A(x1) = x1 + (0,3) minus#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (3,5) le_A(x1,x2) = (2,4) |0|_A() = (0,0) true_A() = (1,3) minus_A(x1,x2) = x1 + (0,2) if_minus_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 mod_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (3,2) if_mod_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (3,2) rand_A(x1) = ((1,0),(0,0)) x1 + (1,3) precedence: mod = if_mod = rand > |0| = minus = if_minus > s > le > false > if_minus# = minus# = true partial status: pi(if_minus#) = [2] pi(false) = [] pi(s) = [] pi(minus#) = [1, 2] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(minus) = [1] pi(if_minus) = [] pi(mod) = [] pi(if_mod) = [] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_minus#_A(x1,x2,x3) = x2 + (1,2) false_A() = (11,1) s_A(x1) = (2,3) minus#_A(x1,x2) = (1,4) le_A(x1,x2) = (10,2) |0|_A() = (5,11) true_A() = (4,4) minus_A(x1,x2) = ((1,0),(1,0)) x1 + (7,5) if_minus_A(x1,x2,x3) = (6,6) mod_A(x1,x2) = (3,1) if_mod_A(x1,x2,x3) = (3,1) rand_A(x1) = (0,0) precedence: false = true > minus > le > mod = if_mod > if_minus > |0| > if_minus# = s = minus# = rand partial status: pi(if_minus#) = [] pi(false) = [] pi(s) = [] pi(minus#) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(minus) = [] pi(if_minus) = [] pi(mod) = [] pi(if_mod) = [] pi(rand) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = x1 + (0,1) s_A(x1) = x1 + (0,6) le_A(x1,x2) = (3,8) |0|_A() = (0,5) true_A() = (1,7) false_A() = (3,4) minus_A(x1,x2) = x1 + (0,3) if_minus_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 mod_A(x1,x2) = x1 + (4,3) if_mod_A(x1,x2,x3) = x2 + (4,0) rand_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: le# = minus > le > true = false = mod = if_mod > if_minus > s = |0| = rand partial status: pi(le#) = [1] pi(s) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(if_minus) = [] pi(mod) = [] pi(if_mod) = [2] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = (2,1) s_A(x1) = (3,2) le_A(x1,x2) = (5,6) |0|_A() = (1,0) true_A() = (1,0) false_A() = (2,3) minus_A(x1,x2) = ((1,0),(1,1)) x1 if_minus_A(x1,x2,x3) = (3,3) mod_A(x1,x2) = (4,3) if_mod_A(x1,x2,x3) = x2 rand_A(x1) = (0,0) precedence: le# = le = rand > mod > if_mod > s = if_minus > |0| = true = false = minus partial status: pi(le#) = [] pi(s) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(if_minus) = [] pi(mod) = [] pi(if_mod) = [2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.