YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) pred(s(x)) -> x minus(x,|0|()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(x,s(y)) -> pred#(minus(x,y)) p3: minus#(x,s(y)) -> minus#(x,y) p4: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p5: mod#(s(x),s(y)) -> le#(y,x) p6: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p7: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p4, p6} {p1} {p3} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_mod#_A(x1,x2,x3) = x2 + (0,1) true_A() = (1,14) s_A(x1) = ((1,0),(1,1)) x1 + (0,4) mod#_A(x1,x2) = x1 + (0,2) minus_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) le_A(x1,x2) = ((1,0),(1,1)) x1 + (2,7) |0|_A() = (2,13) false_A() = (1,12) pred_A(x1) = x1 mod_A(x1,x2) = x1 + x2 + (3,10) if_mod_A(x1,x2,x3) = x2 + x3 + (3,8) rand_A(x1) = ((1,0),(1,0)) x1 + (1,1) precedence: minus = pred = rand > s = mod = if_mod > true = mod# = le > if_mod# = |0| = false partial status: pi(if_mod#) = [2] pi(true) = [] pi(s) = [] pi(mod#) = [] pi(minus) = [] pi(le) = [] pi(|0|) = [] pi(false) = [] pi(pred) = [] pi(mod) = [1, 2] pi(if_mod) = [2] pi(rand) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = ((1,0),(1,1)) x1 + (1,5) s_A(x1) = x1 + (0,4) le_A(x1,x2) = ((1,0),(1,1)) x1 + (6,0) |0|_A() = (3,3) true_A() = (4,5) false_A() = (3,0) pred_A(x1) = x1 minus_A(x1,x2) = x1 + (0,1) mod_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (5,2) if_mod_A(x1,x2,x3) = x2 + ((0,0),(1,0)) x3 + (5,1) rand_A(x1) = ((1,0),(1,0)) x1 + (1,5) precedence: |0| = false = pred = minus = rand > s = le = true = mod = if_mod > le# partial status: pi(le#) = [1] pi(s) = [1] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(pred) = [] pi(minus) = [] pi(mod) = [1] pi(if_mod) = [2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = x2 + (0,4) s_A(x1) = x1 + (0,3) le_A(x1,x2) = ((1,0),(0,0)) x1 + (2,4) |0|_A() = (2,4) true_A() = (1,2) false_A() = (1,5) pred_A(x1) = x1 minus_A(x1,x2) = x1 + (0,1) mod_A(x1,x2) = x1 + x2 + (3,2) if_mod_A(x1,x2,x3) = x2 + x3 + (3,1) rand_A(x1) = ((1,0),(1,0)) x1 + (1,4) precedence: minus# = false = pred = minus = rand > le = |0| = true > s = mod = if_mod partial status: pi(minus#) = [] pi(s) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(pred) = [] pi(minus) = [] pi(mod) = [1, 2] pi(if_mod) = [2, 3] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.