YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(|0|(),y) -> |0|() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus(true(),s(x),y) -> |0|() if_minus(false(),s(x),y) -> s(minus(x,y)) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) log(s(|0|())) -> |0|() log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) p3: minus#(s(x),y) -> le#(s(x),y) p4: if_minus#(false(),s(x),y) -> minus#(x,y) p5: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p6: quot#(s(x),s(y)) -> minus#(x,y) p7: log#(s(s(x))) -> log#(s(quot(x,s(s(|0|()))))) p8: log#(s(s(x))) -> quot#(x,s(s(|0|()))) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: quot(|0|(),s(y)) -> |0|() r9: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r10: log(s(|0|())) -> |0|() r11: log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p7} {p5} {p2, p4} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: log#(s(s(x))) -> log#(s(quot(x,s(s(|0|()))))) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: quot(|0|(),s(y)) -> |0|() r9: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r10: log(s(|0|())) -> |0|() r11: log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: log#_A(x1) = x1 s_A(x1) = x1 + (0,2) quot_A(x1,x2) = x1 |0|_A() = (0,1) le_A(x1,x2) = (0,0) true_A() = (0,0) false_A() = (0,0) minus_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x1 + x2 log_A(x1) = x1 + (0,1) rand_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: quot > log > |0| = minus > if_minus > s = le = false > rand > log# > true partial status: pi(log#) = [1] pi(s) = [1] pi(quot) = [] pi(|0|) = [] pi(le) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(if_minus) = [1] pi(log) = [1] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: log#_A(x1) = ((1,0),(1,1)) x1 + (2,0) s_A(x1) = ((1,0),(0,0)) x1 + (6,3) quot_A(x1,x2) = (3,1) |0|_A() = (2,1) le_A(x1,x2) = (9,4) true_A() = (2,1) false_A() = (1,5) minus_A(x1,x2) = ((1,0),(1,1)) x1 + (2,2) if_minus_A(x1,x2,x3) = ((1,0),(1,1)) x1 + (6,1) log_A(x1) = x1 + (2,1) rand_A(x1) = (0,0) precedence: rand > true > le > minus > log# = s = false = log > if_minus > |0| > quot partial status: pi(log#) = [1] pi(s) = [] pi(quot) = [] pi(|0|) = [] pi(le) = [] pi(true) = [] pi(false) = [] pi(minus) = [] pi(if_minus) = [] pi(log) = [1] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: quot(|0|(),s(y)) -> |0|() r9: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r10: log(s(|0|())) -> |0|() r11: log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = x1 + (0,1) s_A(x1) = x1 + (0,2) minus_A(x1,x2) = x1 le_A(x1,x2) = x2 + (2,1) |0|_A() = (0,2) true_A() = (1,0) false_A() = (1,1) if_minus_A(x1,x2,x3) = x2 quot_A(x1,x2) = x1 log_A(x1) = x1 + (1,3) rand_A(x1) = ((1,0),(0,0)) x1 + (1,3) precedence: quot# = s = minus = le = |0| = true = false = if_minus = quot = log = rand partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(if_minus) = [] pi(quot) = [] pi(log) = [] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = (1,3) s_A(x1) = (2,4) minus_A(x1,x2) = (4,6) le_A(x1,x2) = (2,3) |0|_A() = (0,1) true_A() = (1,4) false_A() = (2,2) if_minus_A(x1,x2,x3) = x2 + (1,1) quot_A(x1,x2) = (2,5) log_A(x1) = (3,0) rand_A(x1) = (0,0) precedence: quot = rand > minus = false > if_minus > quot# = s = le = |0| = true = log partial status: pi(quot#) = [] pi(s) = [] pi(minus) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(if_minus) = [2] pi(quot) = [] pi(log) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: quot(|0|(),s(y)) -> |0|() r9: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r10: log(s(|0|())) -> |0|() r11: log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_minus#_A(x1,x2,x3) = x2 false_A() = (1,2) s_A(x1) = x1 + (0,4) minus#_A(x1,x2) = x1 + (0,1) le_A(x1,x2) = (2,3) |0|_A() = (0,1) true_A() = (1,1) minus_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x2 quot_A(x1,x2) = x1 log_A(x1) = x1 rand_A(x1) = ((1,0),(0,0)) x1 + (1,5) precedence: minus > le > true > quot > false = minus# > s = log > if_minus# = |0| = if_minus = rand partial status: pi(if_minus#) = [] pi(false) = [] pi(s) = [] pi(minus#) = [1] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(minus) = [1] pi(if_minus) = [2] pi(quot) = [] pi(log) = [1] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_minus#_A(x1,x2,x3) = (10,15) false_A() = (7,3) s_A(x1) = (5,4) minus#_A(x1,x2) = ((1,0),(1,1)) x1 + (4,5) le_A(x1,x2) = (6,2) |0|_A() = (0,0) true_A() = (6,1) minus_A(x1,x2) = ((0,0),(1,0)) x1 if_minus_A(x1,x2,x3) = ((0,0),(1,0)) x2 + (6,1) quot_A(x1,x2) = (6,5) log_A(x1) = ((1,0),(0,0)) x1 + (2,6) rand_A(x1) = (0,0) precedence: true > le > rand > false > if_minus > quot > log > |0| = minus > s > if_minus# = minus# partial status: pi(if_minus#) = [] pi(false) = [] pi(s) = [] pi(minus#) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(minus) = [] pi(if_minus) = [] pi(quot) = [] pi(log) = [] pi(rand) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: quot(|0|(),s(y)) -> |0|() r9: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r10: log(s(|0|())) -> |0|() r11: log(s(s(x))) -> s(log(s(quot(x,s(s(|0|())))))) r12: rand(x) -> x r13: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + (0,3) le_A(x1,x2) = (2,5) |0|_A() = (0,1) true_A() = (1,2) false_A() = (1,4) minus_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x2 quot_A(x1,x2) = x1 log_A(x1) = x1 + (1,2) rand_A(x1) = ((1,0),(0,0)) x1 + (1,4) precedence: quot > le# = le = false > minus > true = if_minus > |0| = log > s > rand partial status: pi(le#) = [1, 2] pi(s) = [1] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(if_minus) = [] pi(quot) = [] pi(log) = [1] pi(rand) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 s_A(x1) = (2,0) le_A(x1,x2) = (7,3) |0|_A() = (0,0) true_A() = (0,1) false_A() = (1,1) minus_A(x1,x2) = ((1,0),(0,0)) x1 + (4,2) if_minus_A(x1,x2,x3) = (3,1) quot_A(x1,x2) = (5,3) log_A(x1) = (6,0) rand_A(x1) = (1,1) precedence: le = false = minus > log = rand > quot > if_minus > le# = s = |0| = true partial status: pi(le#) = [] pi(s) = [] pi(le) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [] pi(if_minus) = [] pi(quot) = [] pi(log) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.