YES We show the termination of the relative TRS R/S: R: minus(x,o()) -> x minus(s(x),s(y)) -> minus(x,y) div(|0|(),s(y)) -> |0|() div(s(x),s(y)) -> s(div(minus(x,y),s(y))) divL(x,nil()) -> x divL(x,cons(y,xs)) -> divL(div(x,y),xs) S: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) p3: div#(s(x),s(y)) -> minus#(x,y) p4: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) p5: divL#(x,cons(y,xs)) -> div#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The estimated dependency graph contains the following SCCs: {p4} {p2} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: divL#_A(x1,x2) = max{x1 + 2, x2} cons_A(x1,x2) = x2 + 2 div_A(x1,x2) = x1 minus_A(x1,x2) = x1 o_A = 0 s_A(x1) = x1 + 3 |0|_A = 2 divL_A(x1,x2) = max{x1 + 2, x2 + 9} nil_A = 0 precedence: divL# = cons = div = minus = o = |0| = divL = nil > s partial status: pi(divL#) = [2] pi(cons) = [] pi(div) = [1] pi(minus) = [1] pi(o) = [] pi(s) = [1] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: divL#_A(x1,x2) = x2 cons_A(x1,x2) = 2 div_A(x1,x2) = x1 + 7 minus_A(x1,x2) = max{24, x1 + 16} o_A = 0 s_A(x1) = x1 + 8 |0|_A = 7 divL_A(x1,x2) = max{2, x2} nil_A = 0 precedence: divL# = cons = div = minus = o = s = |0| = divL = nil partial status: pi(divL#) = [2] pi(cons) = [] pi(div) = [] pi(minus) = [] pi(o) = [] pi(s) = [1] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = x1 + 8 s_A(x1) = max{9, x1 + 2} minus_A(x1,x2) = max{4, x1} o_A = 0 div_A(x1,x2) = max{7, x1} |0|_A = 2 divL_A(x1,x2) = max{16, x1 + 8, x2} nil_A = 0 cons_A(x1,x2) = x2 + 17 precedence: o = div > s > |0| > div# > nil = cons > divL > minus partial status: pi(div#) = [1] pi(s) = [1] pi(minus) = [1] pi(o) = [] pi(div) = [1] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] pi(cons) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = x1 + 2 s_A(x1) = x1 + 5 minus_A(x1,x2) = x1 o_A = 0 div_A(x1,x2) = x1 + 9 |0|_A = 4 divL_A(x1,x2) = 0 nil_A = 0 cons_A(x1,x2) = 2 precedence: o = |0| > div > minus = divL > div# = s = nil = cons partial status: pi(div#) = [] pi(s) = [] pi(minus) = [1] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [] pi(nil) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{0, x1 - 1} s_A(x1) = max{3, x1 + 2} minus_A(x1,x2) = max{1, x1} o_A = 0 div_A(x1,x2) = x1 |0|_A = 3 divL_A(x1,x2) = max{x1 + 2, x2 + 1} nil_A = 0 cons_A(x1,x2) = x2 + 1 precedence: o > nil > cons > minus > div = |0| > minus# > divL > s partial status: pi(minus#) = [] pi(s) = [] pi(minus) = [1] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [2] pi(nil) = [] pi(cons) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = 0 s_A(x1) = 2 minus_A(x1,x2) = 9 o_A = 0 div_A(x1,x2) = 8 |0|_A = 3 divL_A(x1,x2) = 0 nil_A = 0 cons_A(x1,x2) = 0 precedence: minus# = s = minus = o = div = |0| = divL = nil = cons partial status: pi(minus#) = [] pi(s) = [] pi(minus) = [] pi(o) = [] pi(div) = [] pi(|0|) = [] pi(divL) = [] pi(nil) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.