YES We show the termination of the relative TRS R/S: R: f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2,x3) = max{x1 + 4, x2 + 9, x3 + 10} |0|_A = 0 |1|_A = 0 s_A(x1) = max{3, x1} f_A(x1,x2,x3) = max{1, x1 - 2, x2 - 1, x3} rand_A(x1) = max{8, x1 + 4} precedence: f# = |0| = |1| = s = f = rand partial status: pi(f#) = [3] pi(|0|) = [] pi(|1|) = [] pi(s) = [1] pi(f) = [3] pi(rand) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs)