YES We show the termination of the relative TRS R/S: R: app(nil(),k) -> k app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) sum(cons(x,nil())) -> cons(x,nil()) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) pred(cons(s(x),nil())) -> cons(x,nil()) S: cons(x,cons(y,l)) -> cons(y,cons(x,l)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p3: sum#(cons(x,cons(y,l))) -> plus#(x,y) p4: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p5: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k)))) p6: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p7: plus#(s(x),y) -> plus#(x,y) p8: sum#(plus(cons(|0|(),x),cons(y,l))) -> pred#(sum(cons(s(x),cons(y,l)))) p9: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p2, p4, p6, p9} {p1} {p7} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) p2: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p3: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p4: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = ((0,1),(0,0)) x1 + (1,6) plus_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (15,3) cons_A(x1,x2) = (0,3) |0|_A() = (15,0) s_A(x1) = ((0,0),(0,1)) x1 + (11,1) app_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (5,4) sum_A(x1) = ((0,0),(0,1)) x1 + (14,0) nil_A() = (12,2) pred_A(x1) = (13,9) precedence: plus = sum = pred > sum# = cons = app > s = nil > |0| partial status: pi(sum#) = [] pi(plus) = [2] pi(cons) = [] pi(|0|) = [] pi(s) = [] pi(app) = [2] pi(sum) = [] pi(nil) = [] pi(pred) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) p2: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p3: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p3: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = ((0,1),(0,1)) x1 + (1,0) plus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (17,3) cons_A(x1,x2) = (7,2) |0|_A() = (17,2) s_A(x1) = (14,1) app_A(x1,x2) = x1 + x2 + (8,3) sum_A(x1) = (16,2) nil_A() = (15,2) pred_A(x1) = (14,2) precedence: plus = s = app = sum > nil > |0| > sum# = cons = pred partial status: pi(sum#) = [] pi(plus) = [] pi(cons) = [] pi(|0|) = [] pi(s) = [] pi(app) = [] pi(sum) = [] pi(nil) = [] pi(pred) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p2: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p2: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = ((1,1),(0,0)) x1 + (1,11) cons_A(x1,x2) = x2 + (0,10) plus_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (1,21) app_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(0,1)) x2 + (1,0) sum_A(x1) = (15,12) nil_A() = (13,0) |0|_A() = (0,0) s_A(x1) = (12,21) pred_A(x1) = (14,12) precedence: cons = plus = app = s = pred > sum > nil = |0| > sum# partial status: pi(sum#) = [] pi(cons) = [] pi(plus) = [] pi(app) = [] pi(sum) = [] pi(nil) = [] pi(|0|) = [] pi(s) = [] pi(pred) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = ((0,1),(0,0)) x1 + (1,1) cons_A(x1,x2) = x2 + (0,2) plus_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (0,5) app_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (2,3) nil_A() = (1,1) sum_A(x1) = ((0,1),(0,0)) x1 + (1,3) |0|_A() = (7,3) s_A(x1) = (0,4) pred_A(x1) = ((1,0),(0,0)) x1 + (1,3) precedence: plus > sum = |0| > nil = pred > sum# = cons = app > s partial status: pi(sum#) = [] pi(cons) = [2] pi(plus) = [2] pi(app) = [1, 2] pi(nil) = [] pi(sum) = [] pi(|0|) = [] pi(s) = [] pi(pred) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (7,5) cons_A(x1,x2) = x2 + (6,4) app_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (7,5) nil_A() = (2,3) sum_A(x1) = (10,7) plus_A(x1,x2) = ((0,0),(1,1)) x1 + x2 + (5,9) |0|_A() = (11,1) s_A(x1) = (1,2) pred_A(x1) = (9,7) precedence: plus > app# = |0| = s = pred > cons = app = nil = sum partial status: pi(app#) = [1] pi(cons) = [2] pi(app) = [] pi(nil) = [] pi(sum) = [] pi(plus) = [] pi(|0|) = [] pi(s) = [] pi(pred) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (2,1) s_A(x1) = x1 + (1,0) app_A(x1,x2) = x1 + x2 + (1,0) nil_A() = (2,0) cons_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (0,5) sum_A(x1) = ((0,1),(0,1)) x1 + (1,0) plus_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (4,11) |0|_A() = (0,0) pred_A(x1) = ((0,0),(0,1)) x1 + (3,5) precedence: app = nil = cons = sum = plus = |0| = pred > plus# > s partial status: pi(plus#) = [1] pi(s) = [1] pi(app) = [] pi(nil) = [] pi(cons) = [] pi(sum) = [] pi(plus) = [] pi(|0|) = [] pi(pred) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.