YES We show the termination of the TRS R: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) active(sqr(|0|())) -> mark(|0|()) active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) active(dbl(|0|())) -> mark(|0|()) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(terms(X)) -> terms(active(X)) active(cons(X1,X2)) -> cons(active(X1),X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1,X2)) -> add(active(X1),X2) active(add(X1,X2)) -> add(X1,active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1,X2)) -> first(active(X1),X2) active(first(X1,X2)) -> first(X1,active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1),X2) -> mark(add(X1,X2)) add(X1,mark(X2)) -> mark(add(X1,X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1),X2) -> mark(first(X1,X2)) first(X1,mark(X2)) -> mark(first(X1,X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(|0|()) -> ok(|0|()) proper(add(X1,X2)) -> add(proper(X1),proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1,X2)) -> first(proper(X1),proper(X2)) proper(nil()) -> ok(nil()) terms(ok(X)) -> ok(terms(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1),ok(X2)) -> ok(add(X1,X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1),ok(X2)) -> ok(first(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(terms(N)) -> cons#(recip(sqr(N)),terms(s(N))) p2: active#(terms(N)) -> recip#(sqr(N)) p3: active#(terms(N)) -> sqr#(N) p4: active#(terms(N)) -> terms#(s(N)) p5: active#(terms(N)) -> s#(N) p6: active#(sqr(s(X))) -> s#(add(sqr(X),dbl(X))) p7: active#(sqr(s(X))) -> add#(sqr(X),dbl(X)) p8: active#(sqr(s(X))) -> sqr#(X) p9: active#(sqr(s(X))) -> dbl#(X) p10: active#(dbl(s(X))) -> s#(s(dbl(X))) p11: active#(dbl(s(X))) -> s#(dbl(X)) p12: active#(dbl(s(X))) -> dbl#(X) p13: active#(add(s(X),Y)) -> s#(add(X,Y)) p14: active#(add(s(X),Y)) -> add#(X,Y) p15: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p16: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p17: active#(terms(X)) -> terms#(active(X)) p18: active#(terms(X)) -> active#(X) p19: active#(cons(X1,X2)) -> cons#(active(X1),X2) p20: active#(cons(X1,X2)) -> active#(X1) p21: active#(recip(X)) -> recip#(active(X)) p22: active#(recip(X)) -> active#(X) p23: active#(sqr(X)) -> sqr#(active(X)) p24: active#(sqr(X)) -> active#(X) p25: active#(s(X)) -> s#(active(X)) p26: active#(s(X)) -> active#(X) p27: active#(add(X1,X2)) -> add#(active(X1),X2) p28: active#(add(X1,X2)) -> active#(X1) p29: active#(add(X1,X2)) -> add#(X1,active(X2)) p30: active#(add(X1,X2)) -> active#(X2) p31: active#(dbl(X)) -> dbl#(active(X)) p32: active#(dbl(X)) -> active#(X) p33: active#(first(X1,X2)) -> first#(active(X1),X2) p34: active#(first(X1,X2)) -> active#(X1) p35: active#(first(X1,X2)) -> first#(X1,active(X2)) p36: active#(first(X1,X2)) -> active#(X2) p37: terms#(mark(X)) -> terms#(X) p38: cons#(mark(X1),X2) -> cons#(X1,X2) p39: recip#(mark(X)) -> recip#(X) p40: sqr#(mark(X)) -> sqr#(X) p41: s#(mark(X)) -> s#(X) p42: add#(mark(X1),X2) -> add#(X1,X2) p43: add#(X1,mark(X2)) -> add#(X1,X2) p44: dbl#(mark(X)) -> dbl#(X) p45: first#(mark(X1),X2) -> first#(X1,X2) p46: first#(X1,mark(X2)) -> first#(X1,X2) p47: proper#(terms(X)) -> terms#(proper(X)) p48: proper#(terms(X)) -> proper#(X) p49: proper#(cons(X1,X2)) -> cons#(proper(X1),proper(X2)) p50: proper#(cons(X1,X2)) -> proper#(X1) p51: proper#(cons(X1,X2)) -> proper#(X2) p52: proper#(recip(X)) -> recip#(proper(X)) p53: proper#(recip(X)) -> proper#(X) p54: proper#(sqr(X)) -> sqr#(proper(X)) p55: proper#(sqr(X)) -> proper#(X) p56: proper#(s(X)) -> s#(proper(X)) p57: proper#(s(X)) -> proper#(X) p58: proper#(add(X1,X2)) -> add#(proper(X1),proper(X2)) p59: proper#(add(X1,X2)) -> proper#(X1) p60: proper#(add(X1,X2)) -> proper#(X2) p61: proper#(dbl(X)) -> dbl#(proper(X)) p62: proper#(dbl(X)) -> proper#(X) p63: proper#(first(X1,X2)) -> first#(proper(X1),proper(X2)) p64: proper#(first(X1,X2)) -> proper#(X1) p65: proper#(first(X1,X2)) -> proper#(X2) p66: terms#(ok(X)) -> terms#(X) p67: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) p68: recip#(ok(X)) -> recip#(X) p69: sqr#(ok(X)) -> sqr#(X) p70: s#(ok(X)) -> s#(X) p71: add#(ok(X1),ok(X2)) -> add#(X1,X2) p72: dbl#(ok(X)) -> dbl#(X) p73: first#(ok(X1),ok(X2)) -> first#(X1,X2) p74: top#(mark(X)) -> top#(proper(X)) p75: top#(mark(X)) -> proper#(X) p76: top#(ok(X)) -> top#(active(X)) p77: top#(ok(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p74, p76} {p18, p20, p22, p24, p26, p28, p30, p32, p34, p36} {p48, p50, p51, p53, p55, p57, p59, p60, p62, p64, p65} {p38, p67} {p39, p68} {p40, p69} {p37, p66} {p41, p70} {p42, p43, p71} {p44, p72} {p45, p46, p73} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47 Take the reduction pair: lexicographic path order precedence: |0| > ok > active > first > nil > terms > sqr > dbl > recip > add > cons > top# > proper > s > mark argument filter: pi(top#) = [1] pi(ok) = 1 pi(active) = 1 pi(mark) = [1] pi(proper) = 1 pi(terms) = [1] pi(cons) = [1] pi(recip) = [1] pi(sqr) = [1] pi(s) = [1] pi(add) = [1, 2] pi(dbl) = [1] pi(first) = [1, 2] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r40, r41, r42, r43, r44, r45, r46, r47 Take the reduction pair: lexicographic path order precedence: dbl > add > sqr > terms > ok > active > nil > first > mark > |0| > cons > s > recip > top# argument filter: pi(top#) = 1 pi(ok) = [1] pi(active) = [1] pi(terms) = 1 pi(mark) = 1 pi(cons) = 2 pi(recip) = 1 pi(sqr) = 1 pi(s) = 1 pi(add) = 2 pi(dbl) = 1 pi(first) = 2 pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(first(X1,X2)) -> active#(X2) p2: active#(first(X1,X2)) -> active#(X1) p3: active#(dbl(X)) -> active#(X) p4: active#(add(X1,X2)) -> active#(X2) p5: active#(add(X1,X2)) -> active#(X1) p6: active#(s(X)) -> active#(X) p7: active#(sqr(X)) -> active#(X) p8: active#(recip(X)) -> active#(X) p9: active#(cons(X1,X2)) -> active#(X1) p10: active#(terms(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order precedence: active# > terms > cons > recip > sqr > s > add > dbl > first argument filter: pi(active#) = [1] pi(first) = [1, 2] pi(dbl) = 1 pi(add) = [1, 2] pi(s) = 1 pi(sqr) = 1 pi(recip) = 1 pi(cons) = 1 pi(terms) = 1 The next rules are strictly ordered: p1, p2, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(dbl(X)) -> active#(X) p2: active#(s(X)) -> active#(X) p3: active#(sqr(X)) -> active#(X) p4: active#(recip(X)) -> active#(X) p5: active#(cons(X1,X2)) -> active#(X1) p6: active#(terms(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(dbl(X)) -> active#(X) p2: active#(terms(X)) -> active#(X) p3: active#(cons(X1,X2)) -> active#(X1) p4: active#(recip(X)) -> active#(X) p5: active#(sqr(X)) -> active#(X) p6: active#(s(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: active# > s > sqr > recip > cons > terms > dbl argument filter: pi(active#) = [1] pi(dbl) = 1 pi(terms) = 1 pi(cons) = [1, 2] pi(recip) = 1 pi(sqr) = 1 pi(s) = 1 The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(dbl(X)) -> active#(X) p2: active#(terms(X)) -> active#(X) p3: active#(recip(X)) -> active#(X) p4: active#(sqr(X)) -> active#(X) p5: active#(s(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(dbl(X)) -> active#(X) p2: active#(s(X)) -> active#(X) p3: active#(sqr(X)) -> active#(X) p4: active#(recip(X)) -> active#(X) p5: active#(terms(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: active# > terms > recip > sqr > s > dbl argument filter: pi(active#) = 1 pi(dbl) = [1] pi(s) = [1] pi(sqr) = [1] pi(recip) = 1 pi(terms) = [1] The next rules are strictly ordered: p1, p2, p3, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(recip(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(recip(X)) -> active#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: recip > active# argument filter: pi(active#) = [1] pi(recip) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(first(X1,X2)) -> proper#(X2) p2: proper#(first(X1,X2)) -> proper#(X1) p3: proper#(dbl(X)) -> proper#(X) p4: proper#(add(X1,X2)) -> proper#(X2) p5: proper#(add(X1,X2)) -> proper#(X1) p6: proper#(s(X)) -> proper#(X) p7: proper#(sqr(X)) -> proper#(X) p8: proper#(recip(X)) -> proper#(X) p9: proper#(cons(X1,X2)) -> proper#(X2) p10: proper#(cons(X1,X2)) -> proper#(X1) p11: proper#(terms(X)) -> proper#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: proper# > terms > cons > recip > sqr > s > add > dbl > first argument filter: pi(proper#) = 1 pi(first) = [1, 2] pi(dbl) = [1] pi(add) = [1, 2] pi(s) = [1] pi(sqr) = [1] pi(recip) = [1] pi(cons) = [1, 2] pi(terms) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order precedence: cons# > ok > mark argument filter: pi(cons#) = 2 pi(mark) = [] pi(ok) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: mark > cons# argument filter: pi(cons#) = [1, 2] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: recip#(mark(X)) -> recip#(X) p2: recip#(ok(X)) -> recip#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: recip# > ok > mark argument filter: pi(recip#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(mark(X)) -> sqr#(X) p2: sqr#(ok(X)) -> sqr#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: sqr# > ok > mark argument filter: pi(sqr#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: terms#(mark(X)) -> terms#(X) p2: terms#(ok(X)) -> terms#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: terms# > ok > mark argument filter: pi(terms#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(ok(X)) -> s#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: s# > ok > mark argument filter: pi(s#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(ok(X1),ok(X2)) -> add#(X1,X2) p3: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order precedence: add# > ok > mark argument filter: pi(add#) = 2 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: mark > add# argument filter: pi(add#) = [1, 2] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(mark(X)) -> dbl#(X) p2: dbl#(ok(X)) -> dbl#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: dbl# > ok > mark argument filter: pi(dbl#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(ok(X1),ok(X2)) -> first#(X1,X2) p3: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order precedence: first# > ok > mark argument filter: pi(first#) = 2 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(terms(X)) -> terms(active(X)) r11: active(cons(X1,X2)) -> cons(active(X1),X2) r12: active(recip(X)) -> recip(active(X)) r13: active(sqr(X)) -> sqr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(add(X1,X2)) -> add(active(X1),X2) r16: active(add(X1,X2)) -> add(X1,active(X2)) r17: active(dbl(X)) -> dbl(active(X)) r18: active(first(X1,X2)) -> first(active(X1),X2) r19: active(first(X1,X2)) -> first(X1,active(X2)) r20: terms(mark(X)) -> mark(terms(X)) r21: cons(mark(X1),X2) -> mark(cons(X1,X2)) r22: recip(mark(X)) -> mark(recip(X)) r23: sqr(mark(X)) -> mark(sqr(X)) r24: s(mark(X)) -> mark(s(X)) r25: add(mark(X1),X2) -> mark(add(X1,X2)) r26: add(X1,mark(X2)) -> mark(add(X1,X2)) r27: dbl(mark(X)) -> mark(dbl(X)) r28: first(mark(X1),X2) -> mark(first(X1,X2)) r29: first(X1,mark(X2)) -> mark(first(X1,X2)) r30: proper(terms(X)) -> terms(proper(X)) r31: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r32: proper(recip(X)) -> recip(proper(X)) r33: proper(sqr(X)) -> sqr(proper(X)) r34: proper(s(X)) -> s(proper(X)) r35: proper(|0|()) -> ok(|0|()) r36: proper(add(X1,X2)) -> add(proper(X1),proper(X2)) r37: proper(dbl(X)) -> dbl(proper(X)) r38: proper(first(X1,X2)) -> first(proper(X1),proper(X2)) r39: proper(nil()) -> ok(nil()) r40: terms(ok(X)) -> ok(terms(X)) r41: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r42: recip(ok(X)) -> ok(recip(X)) r43: sqr(ok(X)) -> ok(sqr(X)) r44: s(ok(X)) -> ok(s(X)) r45: add(ok(X1),ok(X2)) -> ok(add(X1,X2)) r46: dbl(ok(X)) -> ok(dbl(X)) r47: first(ok(X1),ok(X2)) -> ok(first(X1,X2)) r48: top(mark(X)) -> top(proper(X)) r49: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order precedence: mark > first# argument filter: pi(first#) = [1, 2] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.