YES We show the termination of the TRS R: app(app(plus(),|0|()),y) -> y app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) app(app(sumwith(),f),nil()) -> nil() app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) p4: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) p5: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(plus(),app(f,x)) p6: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(f,x) p7: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The estimated dependency graph contains the following SCCs: {p6, p7} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{1, x1, x2} app_A(x1,x2) = max{x1, x2 + 2} sumwith_A = 0 cons_A = 2 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: app#_A(x1,x2) = x2 + 4 app_A(x1,x2) = max{x1 - 2, x2 + 1} sumwith_A = 0 cons_A = 2 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{1, x1} app_A(x1,x2) = max{x1, x2 + 3} plus_A = 2 s_A = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.