YES We show the termination of the TRS R: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) p2: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) p3: ap#(ap(ff(),x),x) -> ap#(ap(cons(),x),nil()) p4: ap#(ap(ff(),x),x) -> ap#(cons(),x) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) p2: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The set of usable rules consists of r1 Take the reduction pair: max/plus interpretations on natural numbers: ap#_A(x1,x2) = max{x1 + 3, x2 + 3} ap_A(x1,x2) = max{3, x1 - 2, x2 - 2} ff_A = 10 cons_A = 3 nil_A = 3 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ap#(ap(ff(),x),x) -> ap#(x,ap(ff(),x)) and R consists of: r1: ap(ap(ff(),x),x) -> ap(ap(x,ap(ff(),x)),ap(ap(cons(),x),nil())) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: ap#_A(x1,x2) = x1 ap_A(x1,x2) = max{x1 - 2, x2 + 1} ff_A = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.