YES We show the termination of the TRS R: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_var(x),Id()) -> Term_var(x) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) Sum_sub(xi,Id()) -> Sum_term_var(xi) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Id(),s) -> s -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s) p3: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p4: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p5: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p6: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) p7: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p8: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p9: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p10: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p11: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p12: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p13: Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> Term_sub#(Term_var(x),s) p14: Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub#(Term_var(x),s) p15: Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t)) p16: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p17: Sum_sub#(xi,Cons_sum(psi,k,s)) -> Sum_sub#(xi,s) p18: Sum_sub#(xi,Cons_usual(y,m,s)) -> Sum_sub#(xi,s) p19: Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u)) p20: Concat#(Concat(s,t),u) -> Concat#(t,u) p21: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p22: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p23: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p15, p16, p19, p20, p21, p22, p23} {p17, p18} {p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) p3: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p4: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p5: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p6: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p7: Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t)) p8: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p9: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p10: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p11: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p12: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p13: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p14: Concat#(Concat(s,t),u) -> Concat#(t,u) p15: Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u)) p16: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p17: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p18: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 2 Case_A(x1,x2,x3) = max{7, x1, x3} Frozen#_A(x1,x2,x3,x4) = max{x1 + 2, x3 + 2} Sum_sub_A(x1,x2) = max{x1 + 1, x2 + 10} Sum_term_var_A(x1) = 1 Term_sub_A(x1,x2) = max{x1 + 11, x2} Concat#_A(x1,x2) = max{13, x1 + 2} Cons_sum_A(x1,x2,x3) = max{2, x1 - 9, x2 - 9, x3} Cons_usual_A(x1,x2,x3) = max{11, x1, x2, x3} Concat_A(x1,x2) = max{x1 + 11, x2} Term_inr_A(x1) = max{11, x1} Term_inl_A(x1) = max{12, x1} Term_pair_A(x1,x2) = max{12, x1, x2} Term_app_A(x1,x2) = max{12, x1, x2} Sum_constant_A(x1) = 1 Right_A = 0 Left_A = 0 Frozen_A(x1,x2,x3,x4) = max{x1 + 11, x3 + 11, x4} Term_var_A(x1) = max{12, x1 + 1} Id_A = 0 The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) p3: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p4: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p5: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p6: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p7: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p9: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p10: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p11: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p12: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p13: Concat#(Concat(s,t),u) -> Concat#(t,u) p14: Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u)) p15: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p16: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p17: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p7: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p9: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p10: Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u)) p11: Concat#(Concat(s,t),u) -> Concat#(t,u) p12: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p13: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p14: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p15: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p16: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p17: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 11 Case_A(x1,x2,x3) = max{6, x1, x3} Frozen#_A(x1,x2,x3,x4) = max{x1 + 11, x3 + 11} Sum_sub_A(x1,x2) = max{x1 + 3, x2 + 3} Sum_constant_A(x1) = 3 Left_A = 0 Term_app_A(x1,x2) = max{1, x1, x2} Term_pair_A(x1,x2) = max{1, x1, x2} Term_inl_A(x1) = max{1, x1} Term_inr_A(x1) = max{1, x1} Term_sub_A(x1,x2) = max{x1 + 6, x2 - 2} Concat#_A(x1,x2) = x1 + 9 Concat_A(x1,x2) = max{x1 + 6, x2} Cons_usual_A(x1,x2,x3) = max{x1, x2 + 2, x3} Cons_sum_A(x1,x2,x3) = max{6, x1, x2, x3} Right_A = 0 Sum_term_var_A(x1) = 1 Frozen_A(x1,x2,x3,x4) = max{x1 + 6, x3 + 6, x4 - 2} Term_var_A(x1) = max{1, x1 - 5} Id_A = 0 The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p7: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p9: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p10: Concat#(Concat(s,t),u) -> Concat#(t,u) p11: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p12: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p13: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p14: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p15: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p16: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) p3: Term_sub#(Term_sub(m,s),t) -> Concat#(s,t) p4: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p5: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p6: Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t) p7: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p9: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p10: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p11: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p12: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p13: Concat#(Concat(s,t),u) -> Concat#(t,u) p14: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p15: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p16: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = max{4, x1 + 2} Case_A(x1,x2,x3) = max{x1 + 2, x2 + 4, x3 + 2} Frozen#_A(x1,x2,x3,x4) = max{x1 + 4, x3 + 3} Sum_sub_A(x1,x2) = max{x1 + 3, x2 + 3} Sum_term_var_A(x1) = 1 Term_sub_A(x1,x2) = max{x1 + 4, x2 + 4} Concat#_A(x1,x2) = x1 + 5 Cons_sum_A(x1,x2,x3) = max{x2, x3} Cons_usual_A(x1,x2,x3) = max{x1, x2, x3} Term_inr_A(x1) = x1 + 1 Term_inl_A(x1) = x1 Term_pair_A(x1,x2) = max{x1, x2} Term_app_A(x1,x2) = max{x1, x2} Concat_A(x1,x2) = max{x1 + 1, x2 + 1} Sum_constant_A(x1) = x1 + 3 Right_A = 0 Left_A = 0 Id_A = 0 The next rules are strictly ordered: p3, p6, p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) p3: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p4: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) p5: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p6: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p7: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p8: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p9: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p10: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p11: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p12: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p13: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p5, p6, p7, p8, p9, p10, p11, p12, p13} {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p7: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p9: Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s) p10: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p11: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 5 Case_A(x1,x2,x3) = max{x1, x2, x3 + 1} Frozen#_A(x1,x2,x3,x4) = max{x1 + 5, x2, x3 + 6} Sum_sub_A(x1,x2) = x1 + 1 Sum_constant_A(x1) = 1 Left_A = 0 Term_app_A(x1,x2) = max{x1, x2} Term_pair_A(x1,x2) = max{x1, x2} Term_inl_A(x1) = x1 Term_inr_A(x1) = x1 Right_A = 0 Sum_term_var_A(x1) = 1 Id_A = 0 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 1, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p9, p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p7: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p8: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p9: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s) p6: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p7: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p8: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p9: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = max{3, x1 + 1} Case_A(x1,x2,x3) = max{x1 + 2, x2 + 3, x3 + 2} Frozen#_A(x1,x2,x3,x4) = max{x1 + 1, x2, x3 + 3} Sum_sub_A(x1,x2) = x1 + 4 Sum_term_var_A(x1) = 4 Term_inr_A(x1) = x1 Term_inl_A(x1) = x1 Term_pair_A(x1,x2) = max{x1, x2 + 3} Term_app_A(x1,x2) = max{x1, x2} Sum_constant_A(x1) = 3 Left_A = 2 Id_A = 3 Cons_sum_A(x1,x2,x3) = max{x1 + 3, x2 - 1, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p7: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p8: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s) p6: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p7: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p8: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = max{1, x1} Case_A(x1,x2,x3) = max{x1 + 3, x2 + 3, x3 + 3} Frozen#_A(x1,x2,x3,x4) = max{x1 + 1, x2, x3 + 1} Sum_sub_A(x1,x2) = x1 + 3 Sum_constant_A(x1) = 1 Left_A = 0 Term_app_A(x1,x2) = max{x1, x2} Term_pair_A(x1,x2) = max{x1 + 2, x2 + 2} Term_inl_A(x1) = x1 Term_inr_A(x1) = x1 + 1 Sum_term_var_A(x1) = x1 + 1 Id_A = 0 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 1, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p5: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p6: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p7: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s) p6: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p7: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 1 Case_A(x1,x2,x3) = max{x1 + 2, x2 + 2, x3 + 2} Frozen#_A(x1,x2,x3,x4) = max{x1 + 1, x2 + 1, x3 + 1} Sum_sub_A(x1,x2) = x1 + 2 Sum_term_var_A(x1) = 2 Term_inr_A(x1) = x1 Term_inl_A(x1) = x1 Term_app_A(x1,x2) = max{x1, x2 + 1} Sum_constant_A(x1) = 0 Left_A = 0 Id_A = 2 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 1, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1 + 1, x2 + 1} The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p6: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Term_sub#(Term_inr(m),s) -> Term_sub#(m,s) p6: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 3 Case_A(x1,x2,x3) = max{x1 + 1, x2 - 2, x3 + 1} Frozen#_A(x1,x2,x3,x4) = max{x1 + 3, x2, x3 + 3} Sum_sub_A(x1,x2) = x1 + 1 Sum_constant_A(x1) = 1 Left_A = 0 Term_app_A(x1,x2) = x1 Term_inl_A(x1) = x1 Term_inr_A(x1) = x1 + 1 Sum_term_var_A(x1) = 1 Id_A = 0 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 1, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p4: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p5: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p4: Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s) p5: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 Case_A(x1,x2,x3) = max{x1 + 2, x2 + 2, x3 + 2} Frozen#_A(x1,x2,x3,x4) = max{x1, x2 + 1, x3 + 2} Sum_sub_A(x1,x2) = x1 + 1 Sum_term_var_A(x1) = max{1, x1} Term_inl_A(x1) = x1 Term_app_A(x1,x2) = max{x1 + 1, x2 + 1} Sum_constant_A(x1) = 1 Left_A = 0 Id_A = 0 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 3, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p4: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) p4: Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = max{3, x1} Case_A(x1,x2,x3) = max{x1 + 3, x2 + 4, x3 + 4} Frozen#_A(x1,x2,x3,x4) = max{x1 + 3, x2, x3 + 3} Sum_sub_A(x1,x2) = x1 + 4 Sum_constant_A(x1) = 1 Left_A = 0 Term_inl_A(x1) = x1 Sum_term_var_A(x1) = x1 + 4 Id_A = 0 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) p3: Term_sub#(Term_inl(m),s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 1 Case_A(x1,x2,x3) = max{x1 + 1, x2, x3 + 1} Frozen#_A(x1,x2,x3,x4) = max{x1 + 1, x2 - 2, x3 + 1} Sum_sub_A(x1,x2) = max{4, x1 + 3} Sum_constant_A(x1) = 2 Left_A = 3 Term_inl_A(x1) = x1 + 1 Id_A = 3 Sum_term_var_A(x1) = max{4, x1 + 3} Cons_sum_A(x1,x2,x3) = max{x1 + 2, x2, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) p2: Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of r14, r15, r16, r17 Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x1 + 3 Case_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} Frozen#_A(x1,x2,x3,x4) = max{x1 + 4, x2 + 3, x3 + 4} Sum_sub_A(x1,x2) = x1 + 1 Sum_constant_A(x1) = 1 Left_A = 0 Id_A = 0 Sum_term_var_A(x1) = x1 + 1 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 - 5, x3 - 1} Cons_usual_A(x1,x2,x3) = max{x1, x2} The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) p2: Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Concat#_A(x1,x2) = x1 + 1 Cons_sum_A(x1,x2,x3) = max{x1, x2, x3} Cons_usual_A(x1,x2,x3) = max{x1, x2, x3 + 1} The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Concat#_A(x1,x2) = x1 Cons_sum_A(x1,x2,x3) = x3 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Sum_sub#(xi,Cons_sum(psi,k,s)) -> Sum_sub#(xi,s) p2: Sum_sub#(xi,Cons_usual(y,m,s)) -> Sum_sub#(xi,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Sum_sub#_A(x1,x2) = x2 + 1 Cons_sum_A(x1,x2,x3) = max{x1, x2, x3} Cons_usual_A(x1,x2,x3) = max{x1, x2, x3 + 1} The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Sum_sub#(xi,Cons_sum(psi,k,s)) -> Sum_sub#(xi,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Sum_sub#(xi,Cons_sum(psi,k,s)) -> Sum_sub#(xi,s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Sum_sub#_A(x1,x2) = x2 Cons_sum_A(x1,x2,x3) = max{x1, x2, x3 + 1} The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> Term_sub#(Term_var(x),s) p2: Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub#(Term_var(x),s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = max{x1, x2} Term_var_A(x1) = 0 Cons_usual_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} Cons_sum_A(x1,x2,x3) = x3 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub#(Term_var(x),s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub#(Term_var(x),s) and R consists of: r1: Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) r2: Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) r3: Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) r4: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) r5: Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) r6: Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) r7: Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) r8: Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) r9: Term_sub(Term_var(x),Id()) -> Term_var(x) r10: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m r11: Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) r12: Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) r13: Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t)) r14: Sum_sub(xi,Id()) -> Sum_term_var(xi) r15: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) r16: Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) r17: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) r18: Concat(Concat(s,t),u) -> Concat(s,Concat(t,u)) r19: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) r20: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) r21: Concat(Id(),s) -> s The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: Term_sub#_A(x1,x2) = x2 + 1 Term_var_A(x1) = x1 + 2 Cons_sum_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.