YES We show the termination of the TRS R: if(true(),x,y) -> x if(false(),x,y) -> y if(x,y,y) -> y if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 9, x2 + 4, x3 - 1} if_A(x1,x2,x3) = max{x1 + 8, x2 + 3, x3} u_A = 0 v_A = 4 true_A = 0 false_A = 0 The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 8, x2 + 3, x3 - 5} if_A(x1,x2,x3) = max{x1 + 7, x2 + 5, x3 + 4} u_A = 1 v_A = 4 true_A = 0 false_A = 0 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.