YES We show the termination of the TRS R: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) active(nats(N)) -> mark(cons(N,nats(s(N)))) active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes()) -> active(zprimes()) filter(mark(X1),X2,X3) -> filter(X1,X2,X3) filter(X1,mark(X2),X3) -> filter(X1,X2,X3) filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) filter(active(X1),X2,X3) -> filter(X1,X2,X3) filter(X1,active(X2),X3) -> filter(X1,X2,X3) filter(X1,X2,active(X3)) -> filter(X1,X2,X3) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: active#(filter(cons(X,Y),|0|(),M)) -> cons#(|0|(),filter(Y,M,M)) p3: active#(filter(cons(X,Y),|0|(),M)) -> filter#(Y,M,M) p4: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p5: active#(filter(cons(X,Y),s(N),M)) -> cons#(X,filter(Y,N,M)) p6: active#(filter(cons(X,Y),s(N),M)) -> filter#(Y,N,M) p7: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p8: active#(sieve(cons(|0|(),Y))) -> cons#(|0|(),sieve(Y)) p9: active#(sieve(cons(|0|(),Y))) -> sieve#(Y) p10: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p11: active#(sieve(cons(s(N),Y))) -> cons#(s(N),sieve(filter(Y,N,N))) p12: active#(sieve(cons(s(N),Y))) -> sieve#(filter(Y,N,N)) p13: active#(sieve(cons(s(N),Y))) -> filter#(Y,N,N) p14: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p15: active#(nats(N)) -> cons#(N,nats(s(N))) p16: active#(nats(N)) -> nats#(s(N)) p17: active#(nats(N)) -> s#(N) p18: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p19: active#(zprimes()) -> sieve#(nats(s(s(|0|())))) p20: active#(zprimes()) -> nats#(s(s(|0|()))) p21: active#(zprimes()) -> s#(s(|0|())) p22: active#(zprimes()) -> s#(|0|()) p23: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p24: mark#(filter(X1,X2,X3)) -> filter#(mark(X1),mark(X2),mark(X3)) p25: mark#(filter(X1,X2,X3)) -> mark#(X1) p26: mark#(filter(X1,X2,X3)) -> mark#(X2) p27: mark#(filter(X1,X2,X3)) -> mark#(X3) p28: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p29: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p30: mark#(cons(X1,X2)) -> mark#(X1) p31: mark#(|0|()) -> active#(|0|()) p32: mark#(s(X)) -> active#(s(mark(X))) p33: mark#(s(X)) -> s#(mark(X)) p34: mark#(s(X)) -> mark#(X) p35: mark#(sieve(X)) -> active#(sieve(mark(X))) p36: mark#(sieve(X)) -> sieve#(mark(X)) p37: mark#(sieve(X)) -> mark#(X) p38: mark#(nats(X)) -> active#(nats(mark(X))) p39: mark#(nats(X)) -> nats#(mark(X)) p40: mark#(nats(X)) -> mark#(X) p41: mark#(zprimes()) -> active#(zprimes()) p42: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p43: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p44: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p45: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p46: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p47: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) p48: cons#(mark(X1),X2) -> cons#(X1,X2) p49: cons#(X1,mark(X2)) -> cons#(X1,X2) p50: cons#(active(X1),X2) -> cons#(X1,X2) p51: cons#(X1,active(X2)) -> cons#(X1,X2) p52: s#(mark(X)) -> s#(X) p53: s#(active(X)) -> s#(X) p54: sieve#(mark(X)) -> sieve#(X) p55: sieve#(active(X)) -> sieve#(X) p56: nats#(mark(X)) -> nats#(X) p57: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p4, p7, p10, p14, p18, p23, p25, p26, p27, p28, p30, p32, p34, p35, p37, p38, p40, p41} {p48, p49, p50, p51} {p42, p43, p44, p45, p46, p47} {p54, p55} {p56, p57} {p52, p53} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(zprimes()) -> active#(zprimes()) p3: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(nats(X)) -> mark#(X) p6: mark#(nats(X)) -> active#(nats(mark(X))) p7: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(s(X)) -> mark#(X) p11: mark#(s(X)) -> active#(s(mark(X))) p12: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p13: mark#(cons(X1,X2)) -> mark#(X1) p14: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p15: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p16: mark#(filter(X1,X2,X3)) -> mark#(X3) p17: mark#(filter(X1,X2,X3)) -> mark#(X2) p18: mark#(filter(X1,X2,X3)) -> mark#(X1) p19: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: max/plus interpretations on natural numbers: active#_A(x1) = max{85, x1 + 2} filter_A(x1,x2,x3) = 84 cons_A(x1,x2) = 83 |0|_A = 91 mark#_A(x1) = 86 zprimes_A = 84 sieve_A(x1) = 84 nats_A(x1) = 84 s_A(x1) = 84 mark_A(x1) = max{57, x1 - 35} active_A(x1) = 57 The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(zprimes()) -> active#(zprimes()) p3: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(nats(X)) -> mark#(X) p6: mark#(nats(X)) -> active#(nats(mark(X))) p7: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(s(X)) -> mark#(X) p11: mark#(s(X)) -> active#(s(mark(X))) p12: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p13: mark#(cons(X1,X2)) -> mark#(X1) p14: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p15: mark#(filter(X1,X2,X3)) -> mark#(X3) p16: mark#(filter(X1,X2,X3)) -> mark#(X2) p17: mark#(filter(X1,X2,X3)) -> mark#(X1) p18: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(s(X)) -> active#(s(mark(X))) p9: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p10: mark#(s(X)) -> mark#(X) p11: mark#(sieve(X)) -> active#(sieve(mark(X))) p12: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p13: mark#(nats(X)) -> active#(nats(mark(X))) p14: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p15: mark#(nats(X)) -> mark#(X) p16: mark#(sieve(X)) -> mark#(X) p17: mark#(zprimes()) -> active#(zprimes()) p18: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 289 filter_A(x1,x2,x3) = 89 cons_A(x1,x2) = 78 |0|_A = 31 mark#_A(x1) = 378 mark_A(x1) = max{87, x1 - 3} s_A(x1) = 20 sieve_A(x1) = 89 nats_A(x1) = 89 zprimes_A = 89 active_A(x1) = 87 The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p9: mark#(s(X)) -> mark#(X) p10: mark#(sieve(X)) -> active#(sieve(mark(X))) p11: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p12: mark#(nats(X)) -> active#(nats(mark(X))) p13: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p14: mark#(nats(X)) -> mark#(X) p15: mark#(sieve(X)) -> mark#(X) p16: mark#(zprimes()) -> active#(zprimes()) p17: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(zprimes()) -> active#(zprimes()) p3: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(nats(X)) -> mark#(X) p6: mark#(nats(X)) -> active#(nats(mark(X))) p7: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(s(X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(filter(X1,X2,X3)) -> mark#(X3) p13: mark#(filter(X1,X2,X3)) -> mark#(X2) p14: mark#(filter(X1,X2,X3)) -> mark#(X1) p15: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p16: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p17: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 4 filter_A(x1,x2,x3) = max{x1 + 41, x2 + 41, x3 + 41} cons_A(x1,x2) = max{26, x1 + 1} |0|_A = 14 mark#_A(x1) = x1 + 29 zprimes_A = 169 sieve_A(x1) = max{61, x1 + 37} nats_A(x1) = x1 + 51 s_A(x1) = max{34, x1 + 21} mark_A(x1) = x1 + 25 active_A(x1) = max{26, x1} The next rules are strictly ordered: p1, p2, p4, p5, p9, p10, p11, p12, p13, p14, p16, p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p2: mark#(nats(X)) -> active#(nats(mark(X))) p3: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p4: mark#(sieve(X)) -> active#(sieve(mark(X))) p5: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p2: mark#(sieve(X)) -> active#(sieve(mark(X))) p3: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p4: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p5: mark#(nats(X)) -> active#(nats(mark(X))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: max/plus interpretations on natural numbers: active#_A(x1) = max{51, x1 - 15} zprimes_A = 39 mark#_A(x1) = x1 + 11 sieve_A(x1) = 40 nats_A(x1) = 66 s_A(x1) = 41 |0|_A = 39 mark_A(x1) = max{29, x1 - 11} cons_A(x1,x2) = 40 filter_A(x1,x2,x3) = 45 active_A(x1) = 29 The next rules are strictly ordered: p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p2: mark#(sieve(X)) -> active#(sieve(mark(X))) p3: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p2: mark#(sieve(X)) -> active#(sieve(mark(X))) p3: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 6 zprimes_A = 11 mark#_A(x1) = x1 + 17 sieve_A(x1) = 0 nats_A(x1) = 15 s_A(x1) = 80 |0|_A = 22 mark_A(x1) = max{10, x1 - 2} cons_A(x1,x2) = 4 active_A(x1) = 10 filter_A(x1,x2,x3) = 192 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p2: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 + 2 mark_A(x1) = max{2, x1} active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(mark(X1),X2) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x1 mark_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x1 + 1 mark_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) p3: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p4: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p5: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p6: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = x3 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) p3: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p4: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p5: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p5: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = x3 mark_A(x1) = x1 + 2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{0, x2 - 1} mark_A(x1) = x1 + 2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p3: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = x1 mark_A(x1) = x1 + 1 active_A(x1) = max{0, x1 - 1} The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(mark(X)) -> sieve#(X) p2: sieve#(active(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: sieve#_A(x1) = max{0, x1 - 1} mark_A(x1) = x1 + 1 active_A(x1) = x1 + 2 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(mark(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(mark(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: max/plus interpretations on natural numbers: sieve#_A(x1) = x1 mark_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: nats#(mark(X)) -> nats#(X) p2: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: nats#_A(x1) = max{0, x1 - 1} mark_A(x1) = x1 + 1 active_A(x1) = x1 + 2 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: nats#(mark(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: nats#(mark(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: max/plus interpretations on natural numbers: nats#_A(x1) = x1 mark_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: max/plus interpretations on natural numbers: s#_A(x1) = max{0, x1 - 1} mark_A(x1) = x1 + 1 active_A(x1) = x1 + 2 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: max/plus interpretations on natural numbers: s#_A(x1) = x1 mark_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.