YES We show the termination of the TRS R: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) mat(f(x),f(y())) -> f(mat(x,y())) chk(no(c())) -> active(c()) mat(f(x),c()) -> no(c()) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: chk#(no(f(x))) -> f#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p3: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p4: chk#(no(f(x))) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p5: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p6: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p7: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(X())))))))) p8: chk#(no(f(x))) -> f#(f(f(f(f(f(f(X()))))))) p9: chk#(no(f(x))) -> f#(f(f(f(f(f(X())))))) p10: chk#(no(f(x))) -> f#(f(f(f(f(X()))))) p11: chk#(no(f(x))) -> f#(f(f(f(X())))) p12: chk#(no(f(x))) -> f#(f(f(X()))) p13: chk#(no(f(x))) -> f#(f(X())) p14: chk#(no(f(x))) -> f#(X()) p15: mat#(f(x),f(y())) -> f#(mat(x,y())) p16: mat#(f(x),f(y())) -> mat#(x,y()) p17: chk#(no(c())) -> active#(c()) p18: f#(active(x)) -> active#(f(x)) p19: f#(active(x)) -> f#(x) p20: f#(no(x)) -> f#(x) p21: f#(mark(x)) -> f#(x) p22: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p23: tp#(mark(x)) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p24: tp#(mark(x)) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p25: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p26: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p27: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(X())))))))) p28: tp#(mark(x)) -> f#(f(f(f(f(f(f(X()))))))) p29: tp#(mark(x)) -> f#(f(f(f(f(f(X())))))) p30: tp#(mark(x)) -> f#(f(f(f(f(X()))))) p31: tp#(mark(x)) -> f#(f(f(f(X())))) p32: tp#(mark(x)) -> f#(f(f(X()))) p33: tp#(mark(x)) -> f#(f(X())) p34: tp#(mark(x)) -> f#(X()) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p22} {p3} {p1, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: tp#_A(x1) = max{0, x1 - 65} mark_A(x1) = max{66, x1 - 5} chk_A(x1) = max{64, x1 + 3} mat_A(x1,x2) = max{2, x1 - 65, x2 - 9} f_A(x1) = max{67, x1 + 6} X_A = 0 active_A(x1) = max{63, x1 + 1} no_A(x1) = x1 y_A = 71 c_A = 1 2. max/plus interpretations on natural numbers: tp#_A(x1) = 0 mark_A(x1) = 1 chk_A(x1) = 3 mat_A(x1,x2) = 6 f_A(x1) = 3 X_A = 0 active_A(x1) = 2 no_A(x1) = max{0, x1 - 1} y_A = 0 c_A = 11 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r3, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: chk#_A(x1) = x1 + 1 no_A(x1) = max{0, x1 - 1} f_A(x1) = max{20, x1 + 3} mat_A(x1,x2) = max{3, x1 - 28, x2 + 2} X_A = 0 y_A = 17 c_A = 0 2. max/plus interpretations on natural numbers: chk#_A(x1) = x1 + 1 no_A(x1) = 2 f_A(x1) = 0 mat_A(x1,x2) = 1 X_A = 0 y_A = 0 c_A = 2 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: f#(mark(x)) -> f#(x) p3: f#(no(x)) -> f#(x) p4: f#(active(x)) -> f#(x) p5: f#(active(x)) -> active#(f(x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: active#_A(x1) = x1 + 2 f_A(x1) = x1 f#_A(x1) = x1 + 1 mark_A(x1) = x1 + 1 no_A(x1) = x1 + 1 active_A(x1) = x1 + 2 2. max/plus interpretations on natural numbers: active#_A(x1) = max{0, x1 - 2} f_A(x1) = x1 + 3 f#_A(x1) = x1 + 1 mark_A(x1) = max{4, x1 + 3} no_A(x1) = max{2, x1 + 1} active_A(x1) = x1 + 7 The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.