YES We show the termination of the TRS R: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(cons(|0|(),x),y) -> sum(x,y) sum(nil(),y) -> y empty(nil()) -> true() empty(cons(n,x)) -> false() tail(nil()) -> nil() tail(cons(n,x)) -> x head(cons(n,x)) -> n weight(x) -> if(empty(x),empty(tail(x)),x) if(true(),b,x) -> weight_undefined_error() if(false(),b,x) -> if2(b,x) if2(true(),x) -> head(x) if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) p3: weight#(x) -> if#(empty(x),empty(tail(x)),x) p4: weight#(x) -> empty#(x) p5: weight#(x) -> empty#(tail(x)) p6: weight#(x) -> tail#(x) p7: if#(false(),b,x) -> if2#(b,x) p8: if2#(true(),x) -> head#(x) p9: if2#(false(),x) -> weight#(sum(x,cons(|0|(),tail(tail(x))))) p10: if2#(false(),x) -> sum#(x,cons(|0|(),tail(tail(x)))) p11: if2#(false(),x) -> tail#(tail(x)) p12: if2#(false(),x) -> tail#(x) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: empty(nil()) -> true() r5: empty(cons(n,x)) -> false() r6: tail(nil()) -> nil() r7: tail(cons(n,x)) -> x r8: head(cons(n,x)) -> n r9: weight(x) -> if(empty(x),empty(tail(x)),x) r10: if(true(),b,x) -> weight_undefined_error() r11: if(false(),b,x) -> if2(b,x) r12: if2(true(),x) -> head(x) r13: if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) The estimated dependency graph contains the following SCCs: {p3, p7, p9} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(false(),b,x) -> if2#(b,x) p2: if2#(false(),x) -> weight#(sum(x,cons(|0|(),tail(tail(x))))) p3: weight#(x) -> if#(empty(x),empty(tail(x)),x) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: empty(nil()) -> true() r5: empty(cons(n,x)) -> false() r6: tail(nil()) -> nil() r7: tail(cons(n,x)) -> x r8: head(cons(n,x)) -> n r9: weight(x) -> if(empty(x),empty(tail(x)),x) r10: if(true(),b,x) -> weight_undefined_error() r11: if(false(),b,x) -> if2(b,x) r12: if2(true(),x) -> head(x) r13: if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{1, x2 - 14, x3 - 13} false_A = 18 if2#_A(x1,x2) = max{0, x1 - 15, x2 - 14} weight#_A(x1) = max{2, x1 - 13} sum_A(x1,x2) = max{12, x2 + 1} cons_A(x1,x2) = max{13, x1 + 10, x2 + 10} |0|_A = 3 tail_A(x1) = max{1, x1 - 9} empty_A(x1) = x1 + 9 s_A(x1) = 2 nil_A = 0 true_A = 1 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 false_A = 1 if2#_A(x1,x2) = 2 weight#_A(x1) = 1 sum_A(x1,x2) = 2 cons_A(x1,x2) = 2 |0|_A = 0 tail_A(x1) = 3 empty_A(x1) = x1 s_A(x1) = 0 nil_A = 2 true_A = 1 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: empty(nil()) -> true() r5: empty(cons(n,x)) -> false() r6: tail(nil()) -> nil() r7: tail(cons(n,x)) -> x r8: head(cons(n,x)) -> n r9: weight(x) -> if(empty(x),empty(tail(x)),x) r10: if(true(),b,x) -> weight_undefined_error() r11: if(false(),b,x) -> if2(b,x) r12: if2(true(),x) -> head(x) r13: if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: sum#_A(x1,x2) = x1 + 5 cons_A(x1,x2) = max{x1 - 1, x2 + 1} s_A(x1) = max{1, x1} |0|_A = 0 2. max/plus interpretations on natural numbers: sum#_A(x1,x2) = 0 cons_A(x1,x2) = 0 s_A(x1) = 0 |0|_A = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: empty(nil()) -> true() r5: empty(cons(n,x)) -> false() r6: tail(nil()) -> nil() r7: tail(cons(n,x)) -> x r8: head(cons(n,x)) -> n r9: weight(x) -> if(empty(x),empty(tail(x)),x) r10: if(true(),b,x) -> weight_undefined_error() r11: if(false(),b,x) -> if2(b,x) r12: if2(true(),x) -> head(x) r13: if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: empty(nil()) -> true() r5: empty(cons(n,x)) -> false() r6: tail(nil()) -> nil() r7: tail(cons(n,x)) -> x r8: head(cons(n,x)) -> n r9: weight(x) -> if(empty(x),empty(tail(x)),x) r10: if(true(),b,x) -> weight_undefined_error() r11: if(false(),b,x) -> if2(b,x) r12: if2(true(),x) -> head(x) r13: if2(false(),x) -> weight(sum(x,cons(|0|(),tail(tail(x))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: sum#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = x1 + 1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: sum#_A(x1,x2) = 0 cons_A(x1,x2) = 0 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.