YES We show the termination of the TRS R: cond1(true(),x) -> cond2(even(x),x) cond2(true(),x) -> cond1(neq(x,|0|()),div2(x)) cond2(false(),x) -> cond1(neq(x,|0|()),p(x)) neq(|0|(),|0|()) -> false() neq(|0|(),s(x)) -> true() neq(s(x),|0|()) -> true() neq(s(x),s(y())) -> neq(x,y()) even(|0|()) -> true() even(s(|0|())) -> false() even(s(s(x))) -> even(x) div2(|0|()) -> |0|() div2(s(|0|())) -> |0|() div2(s(s(x))) -> s(div2(x)) p(|0|()) -> |0|() p(s(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cond1#(true(),x) -> cond2#(even(x),x) p2: cond1#(true(),x) -> even#(x) p3: cond2#(true(),x) -> cond1#(neq(x,|0|()),div2(x)) p4: cond2#(true(),x) -> neq#(x,|0|()) p5: cond2#(true(),x) -> div2#(x) p6: cond2#(false(),x) -> cond1#(neq(x,|0|()),p(x)) p7: cond2#(false(),x) -> neq#(x,|0|()) p8: cond2#(false(),x) -> p#(x) p9: neq#(s(x),s(y())) -> neq#(x,y()) p10: even#(s(s(x))) -> even#(x) p11: div2#(s(s(x))) -> div2#(x) and R consists of: r1: cond1(true(),x) -> cond2(even(x),x) r2: cond2(true(),x) -> cond1(neq(x,|0|()),div2(x)) r3: cond2(false(),x) -> cond1(neq(x,|0|()),p(x)) r4: neq(|0|(),|0|()) -> false() r5: neq(|0|(),s(x)) -> true() r6: neq(s(x),|0|()) -> true() r7: neq(s(x),s(y())) -> neq(x,y()) r8: even(|0|()) -> true() r9: even(s(|0|())) -> false() r10: even(s(s(x))) -> even(x) r11: div2(|0|()) -> |0|() r12: div2(s(|0|())) -> |0|() r13: div2(s(s(x))) -> s(div2(x)) r14: p(|0|()) -> |0|() r15: p(s(x)) -> x The estimated dependency graph contains the following SCCs: {p1, p3, p6} {p10} {p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cond1#(true(),x) -> cond2#(even(x),x) p2: cond2#(false(),x) -> cond1#(neq(x,|0|()),p(x)) p3: cond2#(true(),x) -> cond1#(neq(x,|0|()),div2(x)) and R consists of: r1: cond1(true(),x) -> cond2(even(x),x) r2: cond2(true(),x) -> cond1(neq(x,|0|()),div2(x)) r3: cond2(false(),x) -> cond1(neq(x,|0|()),p(x)) r4: neq(|0|(),|0|()) -> false() r5: neq(|0|(),s(x)) -> true() r6: neq(s(x),|0|()) -> true() r7: neq(s(x),s(y())) -> neq(x,y()) r8: even(|0|()) -> true() r9: even(s(|0|())) -> false() r10: even(s(s(x))) -> even(x) r11: div2(|0|()) -> |0|() r12: div2(s(|0|())) -> |0|() r13: div2(s(s(x))) -> s(div2(x)) r14: p(|0|()) -> |0|() r15: p(s(x)) -> x The set of usable rules consists of r4, r6, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: cond1#_A(x1,x2) = max{x1 - 1, x2 + 2} true_A = 8 cond2#_A(x1,x2) = max{7, x2 + 1} even_A(x1) = max{7, x1 + 6} false_A = 0 neq_A(x1,x2) = max{x1 + 1, x2 - 2} |0|_A = 3 p_A(x1) = max{4, x1 - 2} div2_A(x1) = max{4, x1 - 2} s_A(x1) = x1 + 8 2. max/plus interpretations on natural numbers: cond1#_A(x1,x2) = 1 true_A = 0 cond2#_A(x1,x2) = 0 even_A(x1) = 4 false_A = 0 neq_A(x1,x2) = 1 |0|_A = 0 p_A(x1) = 1 div2_A(x1) = 1 s_A(x1) = max{3, x1 - 2} The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: even#(s(s(x))) -> even#(x) and R consists of: r1: cond1(true(),x) -> cond2(even(x),x) r2: cond2(true(),x) -> cond1(neq(x,|0|()),div2(x)) r3: cond2(false(),x) -> cond1(neq(x,|0|()),p(x)) r4: neq(|0|(),|0|()) -> false() r5: neq(|0|(),s(x)) -> true() r6: neq(s(x),|0|()) -> true() r7: neq(s(x),s(y())) -> neq(x,y()) r8: even(|0|()) -> true() r9: even(s(|0|())) -> false() r10: even(s(s(x))) -> even(x) r11: div2(|0|()) -> |0|() r12: div2(s(|0|())) -> |0|() r13: div2(s(s(x))) -> s(div2(x)) r14: p(|0|()) -> |0|() r15: p(s(x)) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: even#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: even#_A(x1) = max{0, x1 - 2} s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div2#(s(s(x))) -> div2#(x) and R consists of: r1: cond1(true(),x) -> cond2(even(x),x) r2: cond2(true(),x) -> cond1(neq(x,|0|()),div2(x)) r3: cond2(false(),x) -> cond1(neq(x,|0|()),p(x)) r4: neq(|0|(),|0|()) -> false() r5: neq(|0|(),s(x)) -> true() r6: neq(s(x),|0|()) -> true() r7: neq(s(x),s(y())) -> neq(x,y()) r8: even(|0|()) -> true() r9: even(s(|0|())) -> false() r10: even(s(s(x))) -> even(x) r11: div2(|0|()) -> |0|() r12: div2(s(|0|())) -> |0|() r13: div2(s(s(x))) -> s(div2(x)) r14: p(|0|()) -> |0|() r15: p(s(x)) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: div2#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: div2#_A(x1) = max{0, x1 - 2} s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.