YES We show the termination of the TRS R: cond(true(),x) -> cond(and(even(x),gr(x,|0|())),p(x)) and(x,false()) -> false() and(false(),x) -> false() and(true(),true()) -> true() even(|0|()) -> true() even(s(|0|())) -> false() even(s(s(x))) -> even(x) gr(|0|(),x) -> false() gr(s(x),|0|()) -> true() gr(s(x),s(y())) -> gr(x,y()) p(|0|()) -> |0|() p(s(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cond#(true(),x) -> cond#(and(even(x),gr(x,|0|())),p(x)) p2: cond#(true(),x) -> and#(even(x),gr(x,|0|())) p3: cond#(true(),x) -> even#(x) p4: cond#(true(),x) -> gr#(x,|0|()) p5: cond#(true(),x) -> p#(x) p6: even#(s(s(x))) -> even#(x) p7: gr#(s(x),s(y())) -> gr#(x,y()) and R consists of: r1: cond(true(),x) -> cond(and(even(x),gr(x,|0|())),p(x)) r2: and(x,false()) -> false() r3: and(false(),x) -> false() r4: and(true(),true()) -> true() r5: even(|0|()) -> true() r6: even(s(|0|())) -> false() r7: even(s(s(x))) -> even(x) r8: gr(|0|(),x) -> false() r9: gr(s(x),|0|()) -> true() r10: gr(s(x),s(y())) -> gr(x,y()) r11: p(|0|()) -> |0|() r12: p(s(x)) -> x The estimated dependency graph contains the following SCCs: {p1} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cond#(true(),x) -> cond#(and(even(x),gr(x,|0|())),p(x)) and R consists of: r1: cond(true(),x) -> cond(and(even(x),gr(x,|0|())),p(x)) r2: and(x,false()) -> false() r3: and(false(),x) -> false() r4: and(true(),true()) -> true() r5: even(|0|()) -> true() r6: even(s(|0|())) -> false() r7: even(s(s(x))) -> even(x) r8: gr(|0|(),x) -> false() r9: gr(s(x),|0|()) -> true() r10: gr(s(x),s(y())) -> gr(x,y()) r11: p(|0|()) -> |0|() r12: p(s(x)) -> x The set of usable rules consists of r2, r3, r4, r5, r6, r7, r8, r9, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: cond#_A(x1,x2) = max{0, x1 - 7, x2 - 2} true_A = 8 and_A(x1,x2) = max{4, x1 - 6, x2 + 2} even_A(x1) = max{10, x1 - 5} gr_A(x1,x2) = max{x1 + 2, x2 + 2} |0|_A = 0 p_A(x1) = max{1, x1 - 1} false_A = 1 s_A(x1) = max{8, x1 + 7} 2. max/plus interpretations on natural numbers: cond#_A(x1,x2) = 0 true_A = 2 and_A(x1,x2) = 1 even_A(x1) = 3 gr_A(x1,x2) = 3 |0|_A = 0 p_A(x1) = 1 false_A = 0 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: even#(s(s(x))) -> even#(x) and R consists of: r1: cond(true(),x) -> cond(and(even(x),gr(x,|0|())),p(x)) r2: and(x,false()) -> false() r3: and(false(),x) -> false() r4: and(true(),true()) -> true() r5: even(|0|()) -> true() r6: even(s(|0|())) -> false() r7: even(s(s(x))) -> even(x) r8: gr(|0|(),x) -> false() r9: gr(s(x),|0|()) -> true() r10: gr(s(x),s(y())) -> gr(x,y()) r11: p(|0|()) -> |0|() r12: p(s(x)) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: even#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: even#_A(x1) = max{0, x1 - 2} s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.