YES We show the termination of the TRS R: is_empty(nil()) -> true() is_empty(cons(x,l)) -> false() hd(cons(x,l)) -> x tl(cons(x,l)) -> l append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) ifappend(l1,l2,true()) -> l2 ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,is_empty(l1)) p2: append#(l1,l2) -> is_empty#(l1) p3: ifappend#(l1,l2,false()) -> hd#(l1) p4: ifappend#(l1,l2,false()) -> append#(tl(l1),l2) p5: ifappend#(l1,l2,false()) -> tl#(l1) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) r6: ifappend(l1,l2,true()) -> l2 r7: ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,is_empty(l1)) p2: ifappend#(l1,l2,false()) -> append#(tl(l1),l2) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) r6: ifappend(l1,l2,true()) -> l2 r7: ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) The set of usable rules consists of r1, r2, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: append#_A(x1,x2) = x1 + 2 ifappend#_A(x1,x2,x3) = max{x1 + 2, x3 + 1} is_empty_A(x1) = x1 + 1 false_A = 3 tl_A(x1) = max{1, x1 - 1} nil_A = 0 true_A = 0 cons_A(x1,x2) = max{x1 + 3, x2 + 3} 2. max/plus interpretations on natural numbers: append#_A(x1,x2) = 1 ifappend#_A(x1,x2,x3) = 0 is_empty_A(x1) = x1 + 1 false_A = 2 tl_A(x1) = 0 nil_A = 0 true_A = 0 cons_A(x1,x2) = 2 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.