YES We show the termination of the TRS R: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(|:|(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(+(x,y),z) -> |:|#(y,z) p5: |:|#(z,+(x,f(y))) -> |:|#(g(z,y),+(x,a())) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(+(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(|:|(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = x1 + 7 |:|_A(x1,x2) = max{5, x1 + 3, x2} +_A(x1,x2) = max{x1, x2} f_A(x1) = max{7, x1 + 6} g_A(x1,x2) = max{x1 - 1, x2 + 3} a_A = 7 2. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = 0 |:|_A(x1,x2) = 1 +_A(x1,x2) = 0 f_A(x1) = 0 g_A(x1,x2) = 0 a_A = 0 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) p3: |:|#(|:|(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(|:|(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = max{1, x1} +_A(x1,x2) = max{x1 + 1, x2} |:|_A(x1,x2) = max{x1 + 2, x2 + 2} 2. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = 0 +_A(x1,x2) = 0 |:|_A(x1,x2) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = x1 + 1 +_A(x1,x2) = max{x1 + 1, x2} 2. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = 0 +_A(x1,x2) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = x1 +_A(x1,x2) = max{x1 + 1, x2 + 1} 2. max/plus interpretations on natural numbers: |:|#_A(x1,x2) = 0 +_A(x1,x2) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.