YES We show the termination of the TRS R: f(c(a(),z,x)) -> b(a(),z) b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y))) b(y,z) -> z -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(c(a(),z,x)) -> b#(a(),z) p2: b#(x,b(z,y)) -> f#(b(f(f(z)),c(x,z,y))) p3: b#(x,b(z,y)) -> b#(f(f(z)),c(x,z,y)) p4: b#(x,b(z,y)) -> f#(f(z)) p5: b#(x,b(z,y)) -> f#(z) and R consists of: r1: f(c(a(),z,x)) -> b(a(),z) r2: b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y))) r3: b(y,z) -> z The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(c(a(),z,x)) -> b#(a(),z) p2: b#(x,b(z,y)) -> f#(z) p3: b#(x,b(z,y)) -> f#(f(z)) p4: b#(x,b(z,y)) -> f#(b(f(f(z)),c(x,z,y))) and R consists of: r1: f(c(a(),z,x)) -> b(a(),z) r2: b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y))) r3: b(y,z) -> z The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: f#_A(x1) = max{0, x1 - 2} c_A(x1,x2,x3) = max{x1 + 16, x2 + 32, x3 + 14} a_A = 0 b#_A(x1,x2) = max{x1 + 27, x2 + 29} b_A(x1,x2) = max{x1 + 22, x2 + 12} f_A(x1) = max{23, x1 - 11} 2. max/plus interpretations on natural numbers: f#_A(x1) = 1 c_A(x1,x2,x3) = 2 a_A = 0 b#_A(x1,x2) = 0 b_A(x1,x2) = 4 f_A(x1) = 0 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.