YES We show the termination of the TRS R: c(z,x,a()) -> f(b(b(f(z),z),x)) b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) f(c(c(z,a(),a()),x,a())) -> z -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> f#(b(b(f(z),z),x)) p2: c#(z,x,a()) -> b#(b(f(z),z),x) p3: c#(z,x,a()) -> b#(f(z),z) p4: c#(z,x,a()) -> f#(z) p5: b#(y,b(z,a())) -> f#(b(c(f(a()),y,z),z)) p6: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) p7: b#(y,b(z,a())) -> c#(f(a()),y,z) p8: b#(y,b(z,a())) -> f#(a()) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The estimated dependency graph contains the following SCCs: {p2, p3, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> b#(b(f(z),z),x) p2: b#(y,b(z,a())) -> c#(f(a()),y,z) p3: c#(z,x,a()) -> b#(f(z),z) p4: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = max{11, x1 - 63, x2 - 76, x3 - 110} a_A = 137 b#_A(x1,x2) = max{0, x1 - 75, x2 - 77} b_A(x1,x2) = max{x1 + 89, x2 - 46} f_A(x1) = max{12, x1 - 127} c_A(x1,x2,x3) = max{82, x1 + 64, x2 - 1, x3 + 81} 2. max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = 1 a_A = 0 b#_A(x1,x2) = 0 b_A(x1,x2) = 2 f_A(x1) = 1 c_A(x1,x2,x3) = 0 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.