YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(activate(X)) p5: activate#(n__from(X)) -> activate#(X) p6: activate#(n__s(X)) -> s#(activate(X)) p7: activate#(n__s(X)) -> activate#(X) p8: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p9: activate#(n__first(X1,X2)) -> activate#(X1) p10: activate#(n__first(X1,X2)) -> activate#(X2) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: sel#_A(x1,x2) = max{11, x1 + 1} s_A(x1) = x1 + 11 cons_A(x1,x2) = max{12, x2 + 8} activate_A(x1) = x1 + 10 from_A(x1) = 13 n__from_A(x1) = 4 n__s_A(x1) = x1 + 11 first_A(x1,x2) = x1 + 3 |0|_A = 1 nil_A = 3 n__first_A(x1,x2) = x1 + 3 2. max/plus interpretations on natural numbers: sel#_A(x1,x2) = 0 s_A(x1) = max{2, x1 - 3} cons_A(x1,x2) = 6 activate_A(x1) = max{2, x1 - 2} from_A(x1) = 5 n__from_A(x1) = 6 n__s_A(x1) = max{2, x1 - 3} first_A(x1,x2) = 1 |0|_A = 0 nil_A = 0 n__first_A(x1,x2) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> activate#(X2) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: first#_A(x1,x2) = max{x1 + 2, x2 + 5} s_A(x1) = x1 + 1 cons_A(x1,x2) = max{2, x1 - 2, x2 - 3} activate#_A(x1) = x1 + 1 n__first_A(x1,x2) = max{x1 + 5, x2 + 6} activate_A(x1) = x1 n__s_A(x1) = x1 + 1 n__from_A(x1) = x1 + 2 from_A(x1) = x1 + 2 first_A(x1,x2) = max{x1 + 5, x2 + 6} |0|_A = 3 nil_A = 7 2. max/plus interpretations on natural numbers: first#_A(x1,x2) = 1 s_A(x1) = 11 cons_A(x1,x2) = 2 activate#_A(x1) = max{0, x1 - 2} n__first_A(x1,x2) = 4 activate_A(x1) = max{14, x1 + 8} n__s_A(x1) = 0 n__from_A(x1) = max{10, x1 + 3} from_A(x1) = max{10, x1 + 3} first_A(x1,x2) = 13 |0|_A = 0 nil_A = 0 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.