YES We show the termination of the TRS R: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(g(X)) -> g(mark(X)) a__f(X1,X2) -> f(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(g(X)) -> mark#(X) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__f#_A(x1,x2) = max{4, x1 + 3, x2 - 1} g_A(x1) = x1 mark_A(x1) = x1 f_A(x1,x2) = max{x1 + 3, x2 - 1} mark#_A(x1) = x1 + 2 a__f_A(x1,x2) = max{x1 + 3, x2 - 1} 2. max/plus interpretations on natural numbers: a__f#_A(x1,x2) = 0 g_A(x1) = max{3, x1 + 1} mark_A(x1) = max{4, x1 + 3} f_A(x1,x2) = 3 mark#_A(x1) = x1 + 1 a__f_A(x1,x2) = 5 The next rules are strictly ordered: p2, p3, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__f#_A(x1,x2) = max{0, x1 - 4, x2 - 3} g_A(x1) = x1 + 5 mark_A(x1) = x1 f_A(x1,x2) = 2 a__f_A(x1,x2) = 2 2. max/plus interpretations on natural numbers: a__f#_A(x1,x2) = 0 g_A(x1) = x1 + 1 mark_A(x1) = x1 f_A(x1,x2) = 1 a__f_A(x1,x2) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.