YES We show the termination of the TRS R: a__and(tt(),T) -> mark(T) a__isNatIList(IL) -> a__isNatList(IL) a__isNat(|0|()) -> tt() a__isNat(s(N)) -> a__isNat(N) a__isNat(length(L)) -> a__isNatList(L) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) a__isNatList(nil()) -> tt() a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) a__zeros() -> cons(|0|(),zeros()) a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) a__uTake1(tt()) -> nil() a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) a__uLength(tt(),L) -> s(a__length(mark(L))) mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) mark(isNatIList(X)) -> a__isNatIList(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNat(X)) -> a__isNat(X) mark(length(X)) -> a__length(mark(X)) mark(zeros()) -> a__zeros() mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) mark(uTake1(X)) -> a__uTake1(mark(X)) mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) mark(tt()) -> tt() mark(|0|()) -> |0|() mark(s(X)) -> s(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(nil()) -> nil() a__and(X1,X2) -> and(X1,X2) a__isNatIList(X) -> isNatIList(X) a__isNatList(X) -> isNatList(X) a__isNat(X) -> isNat(X) a__length(X) -> length(X) a__zeros() -> zeros() a__take(X1,X2) -> take(X1,X2) a__uTake1(X) -> uTake1(X) a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) a__uLength(X1,X2) -> uLength(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: a__isNatIList#(IL) -> a__isNatList#(IL) p3: a__isNat#(s(N)) -> a__isNat#(N) p4: a__isNat#(length(L)) -> a__isNatList#(L) p5: a__isNatIList#(cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p6: a__isNatIList#(cons(N,IL)) -> a__isNat#(N) p7: a__isNatIList#(cons(N,IL)) -> a__isNatIList#(IL) p8: a__isNatList#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p9: a__isNatList#(cons(N,L)) -> a__isNat#(N) p10: a__isNatList#(cons(N,L)) -> a__isNatList#(L) p11: a__isNatList#(take(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p12: a__isNatList#(take(N,IL)) -> a__isNat#(N) p13: a__isNatList#(take(N,IL)) -> a__isNatIList#(IL) p14: a__take#(|0|(),IL) -> a__uTake1#(a__isNatIList(IL)) p15: a__take#(|0|(),IL) -> a__isNatIList#(IL) p16: a__take#(s(M),cons(N,IL)) -> a__uTake2#(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) p17: a__take#(s(M),cons(N,IL)) -> a__and#(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))) p18: a__take#(s(M),cons(N,IL)) -> a__isNat#(M) p19: a__take#(s(M),cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p20: a__take#(s(M),cons(N,IL)) -> a__isNat#(N) p21: a__take#(s(M),cons(N,IL)) -> a__isNatIList#(IL) p22: a__uTake2#(tt(),M,N,IL) -> mark#(N) p23: a__length#(cons(N,L)) -> a__uLength#(a__and(a__isNat(N),a__isNatList(L)),L) p24: a__length#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p25: a__length#(cons(N,L)) -> a__isNat#(N) p26: a__length#(cons(N,L)) -> a__isNatList#(L) p27: a__uLength#(tt(),L) -> a__length#(mark(L)) p28: a__uLength#(tt(),L) -> mark#(L) p29: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) p30: mark#(and(X1,X2)) -> mark#(X1) p31: mark#(and(X1,X2)) -> mark#(X2) p32: mark#(isNatIList(X)) -> a__isNatIList#(X) p33: mark#(isNatList(X)) -> a__isNatList#(X) p34: mark#(isNat(X)) -> a__isNat#(X) p35: mark#(length(X)) -> a__length#(mark(X)) p36: mark#(length(X)) -> mark#(X) p37: mark#(zeros()) -> a__zeros#() p38: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p39: mark#(take(X1,X2)) -> mark#(X1) p40: mark#(take(X1,X2)) -> mark#(X2) p41: mark#(uTake1(X)) -> a__uTake1#(mark(X)) p42: mark#(uTake1(X)) -> mark#(X) p43: mark#(uTake2(X1,X2,X3,X4)) -> a__uTake2#(mark(X1),X2,X3,X4) p44: mark#(uTake2(X1,X2,X3,X4)) -> mark#(X1) p45: mark#(uLength(X1,X2)) -> a__uLength#(mark(X1),X2) p46: mark#(uLength(X1,X2)) -> mark#(X1) p47: mark#(s(X)) -> mark#(X) p48: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p38, p39, p40, p42, p43, p44, p45, p46, p47, p48} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(uLength(X1,X2)) -> mark#(X1) p5: mark#(uLength(X1,X2)) -> a__uLength#(mark(X1),X2) p6: a__uLength#(tt(),L) -> mark#(L) p7: mark#(uTake2(X1,X2,X3,X4)) -> mark#(X1) p8: mark#(uTake2(X1,X2,X3,X4)) -> a__uTake2#(mark(X1),X2,X3,X4) p9: a__uTake2#(tt(),M,N,IL) -> mark#(N) p10: mark#(uTake1(X)) -> mark#(X) p11: mark#(take(X1,X2)) -> mark#(X2) p12: mark#(take(X1,X2)) -> mark#(X1) p13: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p14: a__take#(s(M),cons(N,IL)) -> a__isNatIList#(IL) p15: a__isNatIList#(cons(N,IL)) -> a__isNatIList#(IL) p16: a__isNatIList#(cons(N,IL)) -> a__isNat#(N) p17: a__isNat#(length(L)) -> a__isNatList#(L) p18: a__isNatList#(take(N,IL)) -> a__isNatIList#(IL) p19: a__isNatIList#(cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p20: a__isNatIList#(IL) -> a__isNatList#(IL) p21: a__isNatList#(take(N,IL)) -> a__isNat#(N) p22: a__isNat#(s(N)) -> a__isNat#(N) p23: a__isNatList#(take(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p24: a__isNatList#(cons(N,L)) -> a__isNatList#(L) p25: a__isNatList#(cons(N,L)) -> a__isNat#(N) p26: a__isNatList#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p27: a__take#(s(M),cons(N,IL)) -> a__isNat#(N) p28: a__take#(s(M),cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p29: a__take#(s(M),cons(N,IL)) -> a__isNat#(M) p30: a__take#(s(M),cons(N,IL)) -> a__and#(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))) p31: a__take#(s(M),cons(N,IL)) -> a__uTake2#(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) p32: a__take#(|0|(),IL) -> a__isNatIList#(IL) p33: mark#(length(X)) -> mark#(X) p34: mark#(length(X)) -> a__length#(mark(X)) p35: a__length#(cons(N,L)) -> a__isNatList#(L) p36: a__length#(cons(N,L)) -> a__isNat#(N) p37: a__length#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p38: a__length#(cons(N,L)) -> a__uLength#(a__and(a__isNat(N),a__isNatList(L)),L) p39: a__uLength#(tt(),L) -> a__length#(mark(L)) p40: mark#(isNat(X)) -> a__isNat#(X) p41: mark#(isNatList(X)) -> a__isNatList#(X) p42: mark#(isNatIList(X)) -> a__isNatIList#(X) p43: mark#(and(X1,X2)) -> mark#(X2) p44: mark#(and(X1,X2)) -> mark#(X1) p45: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = max{x1 - 17, x2 + 6} tt_A = 14 mark#_A(x1) = x1 + 6 cons_A(x1,x2) = max{15, x1, x2} s_A(x1) = max{45, x1} uLength_A(x1,x2) = max{62, x1 + 32, x2 + 44} a__uLength#_A(x1,x2) = max{39, x1 - 17, x2 + 16} mark_A(x1) = max{17, x1} uTake2_A(x1,x2,x3,x4) = max{87, x1, x2 + 42, x3 + 67, x4 + 68} a__uTake2#_A(x1,x2,x3,x4) = max{x1 - 12, x2 + 9, x3 + 29, x4 + 29} uTake1_A(x1) = max{86, x1 + 58} take_A(x1,x2) = max{86, x1 + 42, x2 + 68} a__take#_A(x1,x2) = max{75, x1 + 10, x2 + 30} a__isNatIList#_A(x1) = x1 + 16 a__isNat#_A(x1) = max{9, x1 + 8} length_A(x1) = max{62, x1 + 44} a__isNatList#_A(x1) = x1 + 15 a__isNat_A(x1) = max{7, x1 + 4} a__isNatIList_A(x1) = x1 + 10 a__isNatList_A(x1) = x1 + 9 a__and_A(x1,x2) = max{23, x1 + 4, x2} |0|_A = 16 a__length#_A(x1) = max{39, x1 + 16} isNat_A(x1) = max{7, x1 + 4} isNatList_A(x1) = x1 + 9 isNatIList_A(x1) = x1 + 10 and_A(x1,x2) = max{23, x1 + 4, x2} a__zeros_A = 16 zeros_A = 15 a__take_A(x1,x2) = max{86, x1 + 42, x2 + 68} a__uTake1_A(x1) = max{86, x1 + 58} nil_A = 73 a__uTake2_A(x1,x2,x3,x4) = max{87, x1, x2 + 42, x3 + 67, x4 + 68} a__length_A(x1) = max{62, x1 + 44} a__uLength_A(x1,x2) = max{62, x1 + 32, x2 + 44} 2. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = 1 tt_A = 14 mark#_A(x1) = 1 cons_A(x1,x2) = 15 s_A(x1) = 5 uLength_A(x1,x2) = 17 a__uLength#_A(x1,x2) = 12 mark_A(x1) = 24 uTake2_A(x1,x2,x3,x4) = 4 a__uTake2#_A(x1,x2,x3,x4) = 2 uTake1_A(x1) = 5 take_A(x1,x2) = 5 a__take#_A(x1,x2) = 3 a__isNatIList#_A(x1) = 1 a__isNat#_A(x1) = 0 length_A(x1) = 5 a__isNatList#_A(x1) = 1 a__isNat_A(x1) = 15 a__isNatIList_A(x1) = 24 a__isNatList_A(x1) = 24 a__and_A(x1,x2) = 24 |0|_A = 10 a__length#_A(x1) = 12 isNat_A(x1) = 5 isNatList_A(x1) = 23 isNatIList_A(x1) = 24 and_A(x1,x2) = 6 a__zeros_A = 16 zeros_A = 17 a__take_A(x1,x2) = 17 a__uTake1_A(x1) = 17 nil_A = 0 a__uTake2_A(x1,x2,x3,x4) = 16 a__length_A(x1) = 23 a__uLength_A(x1,x2) = 22 The next rules are strictly ordered: p4, p5, p6, p8, p9, p10, p11, p12, p13, p14, p16, p17, p18, p20, p21, p23, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p40, p44 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(uTake2(X1,X2,X3,X4)) -> mark#(X1) p5: a__isNatIList#(cons(N,IL)) -> a__isNatIList#(IL) p6: a__isNatIList#(cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p7: a__isNat#(s(N)) -> a__isNat#(N) p8: a__isNatList#(cons(N,L)) -> a__isNatList#(L) p9: a__isNatList#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p10: a__length#(cons(N,L)) -> a__uLength#(a__and(a__isNat(N),a__isNatList(L)),L) p11: a__uLength#(tt(),L) -> a__length#(mark(L)) p12: mark#(isNatList(X)) -> a__isNatList#(X) p13: mark#(isNatIList(X)) -> a__isNatIList#(X) p14: mark#(and(X1,X2)) -> mark#(X2) p15: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8, p9, p12, p13, p14, p15} {p7} {p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) p3: mark#(and(X1,X2)) -> mark#(X2) p4: mark#(isNatIList(X)) -> a__isNatIList#(X) p5: a__isNatIList#(cons(N,IL)) -> a__and#(a__isNat(N),a__isNatIList(IL)) p6: a__isNatIList#(cons(N,IL)) -> a__isNatIList#(IL) p7: mark#(isNatList(X)) -> a__isNatList#(X) p8: a__isNatList#(cons(N,L)) -> a__and#(a__isNat(N),a__isNatList(L)) p9: a__isNatList#(cons(N,L)) -> a__isNatList#(L) p10: mark#(uTake2(X1,X2,X3,X4)) -> mark#(X1) p11: mark#(s(X)) -> mark#(X) p12: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = x2 + 33 tt_A = 2 mark#_A(x1) = x1 + 33 and_A(x1,x2) = x2 + 15 mark_A(x1) = x1 + 15 isNatIList_A(x1) = x1 + 2 a__isNatIList#_A(x1) = x1 + 34 cons_A(x1,x2) = max{x1 + 19, x2 + 15} a__isNat_A(x1) = x1 + 35 a__isNatIList_A(x1) = max{9, x1 + 6} isNatList_A(x1) = x1 + 4 a__isNatList#_A(x1) = x1 + 36 a__isNatList_A(x1) = x1 + 5 uTake2_A(x1,x2,x3,x4) = max{x1 + 33, x3 + 73, x4 + 69} s_A(x1) = x1 a__and_A(x1,x2) = x2 + 15 a__zeros_A = 22 |0|_A = 2 zeros_A = 7 a__take_A(x1,x2) = max{66, x2 + 54} a__uTake1_A(x1) = max{1, x1 - 8} nil_A = 0 a__uTake2_A(x1,x2,x3,x4) = max{x1 + 33, x3 + 73, x4 + 69} take_A(x1,x2) = x2 + 54 a__length_A(x1) = x1 + 18 a__uLength_A(x1,x2) = max{x1 + 2, x2 + 33} length_A(x1) = x1 + 18 uTake1_A(x1) = max{0, x1 - 8} uLength_A(x1,x2) = max{x1 + 2, x2 + 19} isNat_A(x1) = x1 + 35 2. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = 0 tt_A = 9 mark#_A(x1) = 0 and_A(x1,x2) = 9 mark_A(x1) = 10 isNatIList_A(x1) = 7 a__isNatIList#_A(x1) = max{1, x1 - 2} cons_A(x1,x2) = 3 a__isNat_A(x1) = max{15, x1 + 8} a__isNatIList_A(x1) = 17 isNatList_A(x1) = x1 + 9 a__isNatList#_A(x1) = x1 + 4 a__isNatList_A(x1) = max{16, x1 + 8} uTake2_A(x1,x2,x3,x4) = 4 s_A(x1) = max{5, x1} a__and_A(x1,x2) = 10 a__zeros_A = 4 |0|_A = 2 zeros_A = 5 a__take_A(x1,x2) = 8 a__uTake1_A(x1) = 9 nil_A = 1 a__uTake2_A(x1,x2,x3,x4) = 4 take_A(x1,x2) = 3 a__length_A(x1) = max{10, x1} a__uLength_A(x1,x2) = 10 length_A(x1) = max{3, x1} uTake1_A(x1) = 2 uLength_A(x1,x2) = 5 isNat_A(x1) = x1 + 7 The next rules are strictly ordered: p3, p4, p5, p6, p7, p8, p9, p10, p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) p3: mark#(s(X)) -> mark#(X) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),T) -> mark#(T) p2: mark#(s(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = max{43, x2 + 2} tt_A = 119 mark#_A(x1) = max{1, x1} s_A(x1) = max{50, x1 + 10} and_A(x1,x2) = max{43, x2 + 5} mark_A(x1) = max{38, x1} a__and_A(x1,x2) = max{43, x2 + 5} a__isNatIList_A(x1) = max{98, x1 + 93} a__isNatList_A(x1) = max{70, x1 + 68} a__isNat_A(x1) = max{137, x1 + 69} |0|_A = 0 length_A(x1) = max{0, x1 - 1} zeros_A = 27 cons_A(x1,x2) = x2 + 10 nil_A = 57 take_A(x1,x2) = max{113, x1 + 74, x2 + 36} a__zeros_A = 37 a__take_A(x1,x2) = max{113, x1 + 74, x2 + 36} a__uTake1_A(x1) = max{58, x1 - 63} a__uTake2_A(x1,x2,x3,x4) = max{123, x1 - 65, x2 + 84, x4 + 46} a__length_A(x1) = max{0, x1 - 1} a__uLength_A(x1,x2) = max{x1 - 69, x2 + 9} isNatIList_A(x1) = max{98, x1 + 93} isNatList_A(x1) = max{70, x1 + 68} isNat_A(x1) = max{137, x1 + 69} uTake1_A(x1) = max{58, x1 - 63} uTake2_A(x1,x2,x3,x4) = max{123, x1 - 65, x2 + 84, x4 + 46} uLength_A(x1,x2) = max{x1 - 69, x2 + 9} 2. max/plus interpretations on natural numbers: a__and#_A(x1,x2) = 0 tt_A = 12 mark#_A(x1) = 0 s_A(x1) = 15 and_A(x1,x2) = 9 mark_A(x1) = 15 a__and_A(x1,x2) = 12 a__isNatIList_A(x1) = 13 a__isNatList_A(x1) = 11 a__isNat_A(x1) = 13 |0|_A = 4 length_A(x1) = 0 zeros_A = 15 cons_A(x1,x2) = 10 nil_A = 10 take_A(x1,x2) = 12 a__zeros_A = 14 a__take_A(x1,x2) = 13 a__uTake1_A(x1) = 14 a__uTake2_A(x1,x2,x3,x4) = 10 a__length_A(x1) = 15 a__uLength_A(x1,x2) = 15 isNatIList_A(x1) = 4 isNatList_A(x1) = 0 isNat_A(x1) = 6 uTake1_A(x1) = 9 uTake2_A(x1,x2,x3,x4) = 9 uLength_A(x1,x2) = 0 The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> a__and#(mark(X1),mark(X2)) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(s(N)) -> a__isNat#(N) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__isNat#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: a__isNat#_A(x1) = x1 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__uLength#(a__and(a__isNat(N),a__isNatList(L)),L) p2: a__uLength#(tt(),L) -> a__length#(mark(L)) and R consists of: r1: a__and(tt(),T) -> mark(T) r2: a__isNatIList(IL) -> a__isNatList(IL) r3: a__isNat(|0|()) -> tt() r4: a__isNat(s(N)) -> a__isNat(N) r5: a__isNat(length(L)) -> a__isNatList(L) r6: a__isNatIList(zeros()) -> tt() r7: a__isNatIList(cons(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r8: a__isNatList(nil()) -> tt() r9: a__isNatList(cons(N,L)) -> a__and(a__isNat(N),a__isNatList(L)) r10: a__isNatList(take(N,IL)) -> a__and(a__isNat(N),a__isNatIList(IL)) r11: a__zeros() -> cons(|0|(),zeros()) r12: a__take(|0|(),IL) -> a__uTake1(a__isNatIList(IL)) r13: a__uTake1(tt()) -> nil() r14: a__take(s(M),cons(N,IL)) -> a__uTake2(a__and(a__isNat(M),a__and(a__isNat(N),a__isNatIList(IL))),M,N,IL) r15: a__uTake2(tt(),M,N,IL) -> cons(mark(N),take(M,IL)) r16: a__length(cons(N,L)) -> a__uLength(a__and(a__isNat(N),a__isNatList(L)),L) r17: a__uLength(tt(),L) -> s(a__length(mark(L))) r18: mark(and(X1,X2)) -> a__and(mark(X1),mark(X2)) r19: mark(isNatIList(X)) -> a__isNatIList(X) r20: mark(isNatList(X)) -> a__isNatList(X) r21: mark(isNat(X)) -> a__isNat(X) r22: mark(length(X)) -> a__length(mark(X)) r23: mark(zeros()) -> a__zeros() r24: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r25: mark(uTake1(X)) -> a__uTake1(mark(X)) r26: mark(uTake2(X1,X2,X3,X4)) -> a__uTake2(mark(X1),X2,X3,X4) r27: mark(uLength(X1,X2)) -> a__uLength(mark(X1),X2) r28: mark(tt()) -> tt() r29: mark(|0|()) -> |0|() r30: mark(s(X)) -> s(mark(X)) r31: mark(cons(X1,X2)) -> cons(mark(X1),X2) r32: mark(nil()) -> nil() r33: a__and(X1,X2) -> and(X1,X2) r34: a__isNatIList(X) -> isNatIList(X) r35: a__isNatList(X) -> isNatList(X) r36: a__isNat(X) -> isNat(X) r37: a__length(X) -> length(X) r38: a__zeros() -> zeros() r39: a__take(X1,X2) -> take(X1,X2) r40: a__uTake1(X) -> uTake1(X) r41: a__uTake2(X1,X2,X3,X4) -> uTake2(X1,X2,X3,X4) r42: a__uLength(X1,X2) -> uLength(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__length#_A(x1) = x1 + 27 cons_A(x1,x2) = max{x1 - 13, x2 + 16} a__uLength#_A(x1,x2) = max{x1 - 3, x2 + 42} a__and_A(x1,x2) = max{31, x1 - 26, x2} a__isNat_A(x1) = x1 + 42 a__isNatList_A(x1) = x1 + 45 tt_A = 84 mark_A(x1) = max{32, x1} a__isNatIList_A(x1) = x1 + 71 zeros_A = 14 a__zeros_A = 31 |0|_A = 43 a__take_A(x1,x2) = max{62, x1 - 1, x2 + 29} a__uTake1_A(x1) = max{41, x1 - 43} nil_A = 40 s_A(x1) = max{80, x1 + 16} a__uTake2_A(x1,x2,x3,x4) = max{78, x2 + 15, x3 + 16, x4 + 45} take_A(x1,x2) = max{62, x1 - 1, x2 + 29} a__length_A(x1) = max{64, x1 + 32} a__uLength_A(x1,x2) = max{x1 - 3, x2 + 48} isNatIList_A(x1) = x1 + 71 length_A(x1) = max{64, x1 + 32} uTake1_A(x1) = max{41, x1 - 43} uTake2_A(x1,x2,x3,x4) = max{78, x2 + 15, x3 + 16, x4 + 45} uLength_A(x1,x2) = max{x1 - 3, x2 + 48} and_A(x1,x2) = max{1, x1 - 26, x2} isNatList_A(x1) = x1 + 45 isNat_A(x1) = x1 + 42 2. max/plus interpretations on natural numbers: a__length#_A(x1) = max{0, x1 - 2} cons_A(x1,x2) = 2 a__uLength#_A(x1,x2) = 1 a__and_A(x1,x2) = 4 a__isNat_A(x1) = 1 a__isNatList_A(x1) = 2 tt_A = 0 mark_A(x1) = 4 a__isNatIList_A(x1) = 3 zeros_A = 0 a__zeros_A = 1 |0|_A = 3 a__take_A(x1,x2) = 4 a__uTake1_A(x1) = 1 nil_A = 0 s_A(x1) = 0 a__uTake2_A(x1,x2,x3,x4) = 4 take_A(x1,x2) = 0 a__length_A(x1) = 3 a__uLength_A(x1,x2) = 1 isNatIList_A(x1) = 0 length_A(x1) = 1 uTake1_A(x1) = 1 uTake2_A(x1,x2,x3,x4) = 0 uLength_A(x1,x2) = 0 and_A(x1,x2) = 0 isNatList_A(x1) = 2 isNat_A(x1) = 0 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.