YES We show the termination of the TRS R: active(f(X)) -> mark(if(X,c(),f(true()))) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) mark(f(X)) -> active(f(mark(X))) mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) mark(c()) -> active(c()) mark(true()) -> active(true()) mark(false()) -> active(false()) f(mark(X)) -> f(X) f(active(X)) -> f(X) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: active#(f(X)) -> if#(X,c(),f(true())) p3: active#(f(X)) -> f#(true()) p4: active#(if(true(),X,Y)) -> mark#(X) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(f(X)) -> active#(f(mark(X))) p7: mark#(f(X)) -> f#(mark(X)) p8: mark#(f(X)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p10: mark#(if(X1,X2,X3)) -> if#(mark(X1),mark(X2),X3) p11: mark#(if(X1,X2,X3)) -> mark#(X1) p12: mark#(if(X1,X2,X3)) -> mark#(X2) p13: mark#(c()) -> active#(c()) p14: mark#(true()) -> active#(true()) p15: mark#(false()) -> active#(false()) p16: f#(mark(X)) -> f#(X) p17: f#(active(X)) -> f#(X) p18: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p19: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p20: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p21: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p22: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p23: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p6, p8, p9, p11, p12} {p18, p19, p20, p21, p22, p23} {p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X2) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(f(X)) -> mark#(X) p7: mark#(f(X)) -> active#(f(mark(X))) p8: active#(if(true(),X,Y)) -> mark#(X) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: active#_A(x1) = max{0, x1 - 4} f_A(x1) = max{2, x1} mark#_A(x1) = max{0, x1 - 4} if_A(x1,x2,x3) = max{x1, x2, x3 + 1} c_A = 3 true_A = 0 mark_A(x1) = max{3, x1} false_A = 5 active_A(x1) = max{3, x1} 2. max/plus interpretations on natural numbers: active#_A(x1) = 0 f_A(x1) = 6 mark#_A(x1) = 0 if_A(x1,x2,x3) = 8 c_A = 2 true_A = 0 mark_A(x1) = 8 false_A = 8 active_A(x1) = 8 The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X2) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p5: mark#(f(X)) -> mark#(X) p6: mark#(f(X)) -> active#(f(mark(X))) p7: active#(if(true(),X,Y)) -> mark#(X) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(if(true(),X,Y)) -> mark#(X) p4: mark#(f(X)) -> mark#(X) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),mark(X2),X3)) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(if(X1,X2,X3)) -> mark#(X2) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: active#_A(x1) = x1 + 2 f_A(x1) = x1 + 2 mark#_A(x1) = x1 + 2 if_A(x1,x2,x3) = max{x1, x2 + 2, x3} c_A = 0 true_A = 0 mark_A(x1) = x1 active_A(x1) = x1 false_A = 1 2. max/plus interpretations on natural numbers: active#_A(x1) = max{0, x1 - 7} f_A(x1) = 8 mark#_A(x1) = 1 if_A(x1,x2,x3) = 0 c_A = 14 true_A = 14 mark_A(x1) = 19 active_A(x1) = 19 false_A = 14 The next rules are strictly ordered: p3, p4, p5, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(if(X,c(),f(true()))) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: active#_A(x1) = max{10, x1 - 4} f_A(x1) = max{9, x1 + 6} mark#_A(x1) = x1 + 1 if_A(x1,x2,x3) = max{x1 + 1, x2, x3} c_A = 5 true_A = 2 mark_A(x1) = x1 active_A(x1) = max{1, x1} false_A = 1 2. max/plus interpretations on natural numbers: active#_A(x1) = 4 f_A(x1) = 6 mark#_A(x1) = max{0, x1 - 1} if_A(x1,x2,x3) = 2 c_A = 2 true_A = 2 mark_A(x1) = 2 active_A(x1) = 2 false_A = 2 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = x3 mark_A(x1) = max{2, x1 + 1} active_A(x1) = x1 + 3 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 mark_A(x1) = 0 active_A(x1) = x1 The next rules are strictly ordered: p2, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{2, x2} mark_A(x1) = max{2, x1 + 1} active_A(x1) = max{4, x1 + 3} 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 mark_A(x1) = 0 active_A(x1) = 0 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p3: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = x1 + 1 mark_A(x1) = max{1, x1} active_A(x1) = x1 + 1 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 mark_A(x1) = 0 active_A(x1) = x1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = x2 mark_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 mark_A(x1) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = x1 mark_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = 0 mark_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(X)) -> mark(if(X,c(),f(true()))) r2: active(if(true(),X,Y)) -> mark(X) r3: active(if(false(),X,Y)) -> mark(Y) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(if(X1,X2,X3)) -> active(if(mark(X1),mark(X2),X3)) r6: mark(c()) -> active(c()) r7: mark(true()) -> active(true()) r8: mark(false()) -> active(false()) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: if(mark(X1),X2,X3) -> if(X1,X2,X3) r12: if(X1,mark(X2),X3) -> if(X1,X2,X3) r13: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r14: if(active(X1),X2,X3) -> if(X1,X2,X3) r15: if(X1,active(X2),X3) -> if(X1,X2,X3) r16: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: f#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 2. max/plus interpretations on natural numbers: f#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.