YES We show the termination of the TRS R: a__zeros() -> cons(|0|(),zeros()) a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) a__U12(tt()) -> tt() a__U21(tt(),V1) -> a__U22(a__isNat(V1)) a__U22(tt()) -> tt() a__U31(tt(),V) -> a__U32(a__isNatList(V)) a__U32(tt()) -> tt() a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) a__U43(tt()) -> tt() a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) a__U53(tt()) -> tt() a__U61(tt(),L) -> s(a__length(mark(L))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) a__isNatIListKind(nil()) -> tt() a__isNatIListKind(zeros()) -> tt() a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) a__isNatKind(|0|()) -> tt() a__isNatKind(length(V1)) -> a__isNatIListKind(V1) a__isNatKind(s(V1)) -> a__isNatKind(V1) a__isNatList(nil()) -> tt() a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) a__length(nil()) -> |0|() a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) mark(zeros()) -> a__zeros() mark(U11(X1,X2)) -> a__U11(mark(X1),X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNatList(X)) -> a__isNatList(X) mark(U21(X1,X2)) -> a__U21(mark(X1),X2) mark(U22(X)) -> a__U22(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U31(X1,X2)) -> a__U31(mark(X1),X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) mark(U42(X1,X2)) -> a__U42(mark(X1),X2) mark(U43(X)) -> a__U43(mark(X)) mark(isNatIList(X)) -> a__isNatIList(X) mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) mark(U52(X1,X2)) -> a__U52(mark(X1),X2) mark(U53(X)) -> a__U53(mark(X)) mark(U61(X1,X2)) -> a__U61(mark(X1),X2) mark(length(X)) -> a__length(mark(X)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNatIListKind(X)) -> a__isNatIListKind(X) mark(isNatKind(X)) -> a__isNatKind(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(|0|()) -> |0|() mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() a__zeros() -> zeros() a__U11(X1,X2) -> U11(X1,X2) a__U12(X) -> U12(X) a__isNatList(X) -> isNatList(X) a__U21(X1,X2) -> U21(X1,X2) a__U22(X) -> U22(X) a__isNat(X) -> isNat(X) a__U31(X1,X2) -> U31(X1,X2) a__U32(X) -> U32(X) a__U41(X1,X2,X3) -> U41(X1,X2,X3) a__U42(X1,X2) -> U42(X1,X2) a__U43(X) -> U43(X) a__isNatIList(X) -> isNatIList(X) a__U51(X1,X2,X3) -> U51(X1,X2,X3) a__U52(X1,X2) -> U52(X1,X2) a__U53(X) -> U53(X) a__U61(X1,X2) -> U61(X1,X2) a__length(X) -> length(X) a__and(X1,X2) -> and(X1,X2) a__isNatIListKind(X) -> isNatIListKind(X) a__isNatKind(X) -> isNatKind(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1) -> a__U12#(a__isNatList(V1)) p2: a__U11#(tt(),V1) -> a__isNatList#(V1) p3: a__U21#(tt(),V1) -> a__U22#(a__isNat(V1)) p4: a__U21#(tt(),V1) -> a__isNat#(V1) p5: a__U31#(tt(),V) -> a__U32#(a__isNatList(V)) p6: a__U31#(tt(),V) -> a__isNatList#(V) p7: a__U41#(tt(),V1,V2) -> a__U42#(a__isNat(V1),V2) p8: a__U41#(tt(),V1,V2) -> a__isNat#(V1) p9: a__U42#(tt(),V2) -> a__U43#(a__isNatIList(V2)) p10: a__U42#(tt(),V2) -> a__isNatIList#(V2) p11: a__U51#(tt(),V1,V2) -> a__U52#(a__isNat(V1),V2) p12: a__U51#(tt(),V1,V2) -> a__isNat#(V1) p13: a__U52#(tt(),V2) -> a__U53#(a__isNatList(V2)) p14: a__U52#(tt(),V2) -> a__isNatList#(V2) p15: a__U61#(tt(),L) -> a__length#(mark(L)) p16: a__U61#(tt(),L) -> mark#(L) p17: a__and#(tt(),X) -> mark#(X) p18: a__isNat#(length(V1)) -> a__U11#(a__isNatIListKind(V1),V1) p19: a__isNat#(length(V1)) -> a__isNatIListKind#(V1) p20: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p21: a__isNat#(s(V1)) -> a__isNatKind#(V1) p22: a__isNatIList#(V) -> a__U31#(a__isNatIListKind(V),V) p23: a__isNatIList#(V) -> a__isNatIListKind#(V) p24: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) p25: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p26: a__isNatIList#(cons(V1,V2)) -> a__isNatKind#(V1) p27: a__isNatIListKind#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p28: a__isNatIListKind#(cons(V1,V2)) -> a__isNatKind#(V1) p29: a__isNatKind#(length(V1)) -> a__isNatIListKind#(V1) p30: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p31: a__isNatList#(cons(V1,V2)) -> a__U51#(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) p32: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p33: a__isNatList#(cons(V1,V2)) -> a__isNatKind#(V1) p34: a__length#(cons(N,L)) -> a__U61#(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) p35: a__length#(cons(N,L)) -> a__and#(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))) p36: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNatIListKind(L)) p37: a__length#(cons(N,L)) -> a__isNatList#(L) p38: mark#(zeros()) -> a__zeros#() p39: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p40: mark#(U11(X1,X2)) -> mark#(X1) p41: mark#(U12(X)) -> a__U12#(mark(X)) p42: mark#(U12(X)) -> mark#(X) p43: mark#(isNatList(X)) -> a__isNatList#(X) p44: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p45: mark#(U21(X1,X2)) -> mark#(X1) p46: mark#(U22(X)) -> a__U22#(mark(X)) p47: mark#(U22(X)) -> mark#(X) p48: mark#(isNat(X)) -> a__isNat#(X) p49: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p50: mark#(U31(X1,X2)) -> mark#(X1) p51: mark#(U32(X)) -> a__U32#(mark(X)) p52: mark#(U32(X)) -> mark#(X) p53: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p54: mark#(U41(X1,X2,X3)) -> mark#(X1) p55: mark#(U42(X1,X2)) -> a__U42#(mark(X1),X2) p56: mark#(U42(X1,X2)) -> mark#(X1) p57: mark#(U43(X)) -> a__U43#(mark(X)) p58: mark#(U43(X)) -> mark#(X) p59: mark#(isNatIList(X)) -> a__isNatIList#(X) p60: mark#(U51(X1,X2,X3)) -> a__U51#(mark(X1),X2,X3) p61: mark#(U51(X1,X2,X3)) -> mark#(X1) p62: mark#(U52(X1,X2)) -> a__U52#(mark(X1),X2) p63: mark#(U52(X1,X2)) -> mark#(X1) p64: mark#(U53(X)) -> a__U53#(mark(X)) p65: mark#(U53(X)) -> mark#(X) p66: mark#(U61(X1,X2)) -> a__U61#(mark(X1),X2) p67: mark#(U61(X1,X2)) -> mark#(X1) p68: mark#(length(X)) -> a__length#(mark(X)) p69: mark#(length(X)) -> mark#(X) p70: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p71: mark#(and(X1,X2)) -> mark#(X1) p72: mark#(isNatIListKind(X)) -> a__isNatIListKind#(X) p73: mark#(isNatKind(X)) -> a__isNatKind#(X) p74: mark#(cons(X1,X2)) -> mark#(X1) p75: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p2, p4, p6, p7, p8, p10, p11, p12, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p39, p40, p42, p43, p44, p45, p47, p48, p49, p50, p52, p53, p54, p55, p56, p58, p59, p60, p61, p62, p63, p65, p66, p67, p68, p69, p70, p71, p72, p73, p74, p75} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1) -> a__isNatList#(V1) p2: a__isNatList#(cons(V1,V2)) -> a__isNatKind#(V1) p3: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(length(V1)) -> a__isNatIListKind#(V1) p5: a__isNatIListKind#(cons(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatIListKind#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatKind(X)) -> a__isNatKind#(X) p11: mark#(isNatIListKind(X)) -> a__isNatIListKind#(X) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p14: mark#(length(X)) -> mark#(X) p15: mark#(length(X)) -> a__length#(mark(X)) p16: a__length#(cons(N,L)) -> a__isNatList#(L) p17: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p18: a__isNatList#(cons(V1,V2)) -> a__U51#(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) p19: a__U51#(tt(),V1,V2) -> a__isNat#(V1) p20: a__isNat#(s(V1)) -> a__isNatKind#(V1) p21: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p22: a__U21#(tt(),V1) -> a__isNat#(V1) p23: a__isNat#(length(V1)) -> a__isNatIListKind#(V1) p24: a__isNat#(length(V1)) -> a__U11#(a__isNatIListKind(V1),V1) p25: a__U51#(tt(),V1,V2) -> a__U52#(a__isNat(V1),V2) p26: a__U52#(tt(),V2) -> a__isNatList#(V2) p27: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNatIListKind(L)) p28: a__length#(cons(N,L)) -> a__and#(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))) p29: a__length#(cons(N,L)) -> a__U61#(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) p30: a__U61#(tt(),L) -> mark#(L) p31: mark#(U61(X1,X2)) -> mark#(X1) p32: mark#(U61(X1,X2)) -> a__U61#(mark(X1),X2) p33: a__U61#(tt(),L) -> a__length#(mark(L)) p34: mark#(U53(X)) -> mark#(X) p35: mark#(U52(X1,X2)) -> mark#(X1) p36: mark#(U52(X1,X2)) -> a__U52#(mark(X1),X2) p37: mark#(U51(X1,X2,X3)) -> mark#(X1) p38: mark#(U51(X1,X2,X3)) -> a__U51#(mark(X1),X2,X3) p39: mark#(isNatIList(X)) -> a__isNatIList#(X) p40: a__isNatIList#(cons(V1,V2)) -> a__isNatKind#(V1) p41: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNatKind(V1),isNatIListKind(V2)) p42: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) p43: a__U41#(tt(),V1,V2) -> a__isNat#(V1) p44: a__U41#(tt(),V1,V2) -> a__U42#(a__isNat(V1),V2) p45: a__U42#(tt(),V2) -> a__isNatIList#(V2) p46: a__isNatIList#(V) -> a__isNatIListKind#(V) p47: a__isNatIList#(V) -> a__U31#(a__isNatIListKind(V),V) p48: a__U31#(tt(),V) -> a__isNatList#(V) p49: mark#(U43(X)) -> mark#(X) p50: mark#(U42(X1,X2)) -> mark#(X1) p51: mark#(U42(X1,X2)) -> a__U42#(mark(X1),X2) p52: mark#(U41(X1,X2,X3)) -> mark#(X1) p53: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p54: mark#(U32(X)) -> mark#(X) p55: mark#(U31(X1,X2)) -> mark#(X1) p56: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p57: mark#(isNat(X)) -> a__isNat#(X) p58: mark#(U22(X)) -> mark#(X) p59: mark#(U21(X1,X2)) -> mark#(X1) p60: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p61: mark#(isNatList(X)) -> a__isNatList#(X) p62: mark#(U12(X)) -> mark#(X) p63: mark#(U11(X1,X2)) -> mark#(X1) p64: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = max{x1 + 107, x2 + 68} tt_A = 61 a__isNatList#_A(x1) = x1 + 67 cons_A(x1,x2) = max{x1 + 80, x2 + 89} a__isNatKind#_A(x1) = x1 + 126 s_A(x1) = max{90, x1} length_A(x1) = max{77, x1 + 73} a__isNatIListKind#_A(x1) = x1 + 67 a__and#_A(x1,x2) = max{x1 + 68, x2 + 149} a__isNatKind_A(x1) = x1 + 63 isNatIListKind_A(x1) = max{6, x1 - 36} mark#_A(x1) = x1 + 148 isNatKind_A(x1) = max{0, x1 - 21} and_A(x1,x2) = max{12, x1 + 6, x2 + 11} mark_A(x1) = max{89, x1 + 85} a__length#_A(x1) = max{190, x1 + 60} a__U51#_A(x1,x2,x3) = max{x1 - 59, x2 + 128, x3 + 69} a__and_A(x1,x2) = max{x1 + 6, x2 + 90} a__isNat#_A(x1) = x1 + 127 a__U21#_A(x1,x2) = max{x1 - 62, x2 + 127} a__isNatIListKind_A(x1) = max{90, x1 + 10} a__U52#_A(x1,x2) = max{x1 - 61, x2 + 68} a__isNat_A(x1) = x1 + 65 a__isNatList_A(x1) = max{82, x1 + 47} isNat_A(x1) = max{8, x1 - 16} a__U61#_A(x1,x2) = max{190, x2 + 148} U61_A(x1,x2) = max{158, x1 + 50, x2 + 78} U53_A(x1) = max{119, x1 + 39} U52_A(x1,x2) = max{x1 + 61, x2 + 120} U51_A(x1,x2,x3) = max{127, x1 + 30, x2 + 43, x3 + 35} isNatIList_A(x1) = max{97, x1 + 13} a__isNatIList#_A(x1) = max{131, x1 + 69} a__U41#_A(x1,x2,x3) = max{x1 + 36, x2 + 148, x3 + 133} a__U42#_A(x1,x2) = max{x1 + 71, x2 + 132} a__U31#_A(x1,x2) = max{x1 - 22, x2 + 68} U43_A(x1) = max{87, x1 + 1} U42_A(x1,x2) = max{99, x1 + 38, x2 + 42} U41_A(x1,x2,x3) = max{104, x1 + 28, x2 + 103, x3 + 100} U32_A(x1) = max{8, x1 + 4} U31_A(x1,x2) = max{95, x1 + 7, x2 + 10} U22_A(x1) = max{63, x1} U21_A(x1,x2) = max{x1 + 1, x2 + 64} isNatList_A(x1) = x1 U12_A(x1) = max{62, x1 + 58} U11_A(x1,x2) = max{x1 + 49, x2 + 56} a__zeros_A = 89 |0|_A = 0 zeros_A = 0 a__U11_A(x1,x2) = max{141, x1 + 49, x2 + 106} a__U12_A(x1) = max{62, x1 + 58} a__U21_A(x1,x2) = max{x1 + 1, x2 + 65} a__U22_A(x1) = max{63, x1} a__U31_A(x1,x2) = max{x1 + 7, x2 + 95} a__U32_A(x1) = max{88, x1 + 4} a__U41_A(x1,x2,x3) = max{x1 + 28, x2 + 104, x3 + 100} a__U42_A(x1,x2) = max{x1 + 38, x2 + 99} a__U43_A(x1) = max{87, x1 + 1} a__isNatIList_A(x1) = max{97, x1 + 96} a__U51_A(x1,x2,x3) = max{x1 + 30, x2 + 127, x3 + 120} a__U52_A(x1,x2) = max{x1 + 61, x2 + 120} a__U53_A(x1) = max{119, x1 + 39} a__U61_A(x1,x2) = max{x1 + 50, x2 + 162} a__length_A(x1) = max{156, x1 + 73} nil_A = 52 2. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = 5 tt_A = 29 a__isNatList#_A(x1) = 6 cons_A(x1,x2) = 0 a__isNatKind#_A(x1) = 2 s_A(x1) = 18 length_A(x1) = 31 a__isNatIListKind#_A(x1) = 1 a__and#_A(x1,x2) = 0 a__isNatKind_A(x1) = 51 isNatIListKind_A(x1) = 0 mark#_A(x1) = 40 isNatKind_A(x1) = 0 and_A(x1,x2) = 30 mark_A(x1) = 32 a__length#_A(x1) = 41 a__U51#_A(x1,x2,x3) = 5 a__and_A(x1,x2) = 31 a__isNat#_A(x1) = 4 a__U21#_A(x1,x2) = 4 a__isNatIListKind_A(x1) = 50 a__U52#_A(x1,x2) = 7 a__isNat_A(x1) = max{28, x1 + 14} a__isNatList_A(x1) = 33 isNat_A(x1) = 14 a__U61#_A(x1,x2) = 41 U61_A(x1,x2) = 29 U53_A(x1) = 21 U52_A(x1,x2) = 10 U51_A(x1,x2,x3) = 11 isNatIList_A(x1) = 32 a__isNatIList#_A(x1) = 8 a__U41#_A(x1,x2,x3) = 5 a__U42#_A(x1,x2) = 9 a__U31#_A(x1,x2) = 7 U43_A(x1) = 28 U42_A(x1,x2) = 20 U41_A(x1,x2,x3) = 19 U32_A(x1) = 21 U31_A(x1,x2) = 0 U22_A(x1) = 1 U21_A(x1,x2) = 20 isNatList_A(x1) = 24 U12_A(x1) = 29 U11_A(x1,x2) = 20 a__zeros_A = 32 |0|_A = 33 zeros_A = 33 a__U11_A(x1,x2) = 31 a__U12_A(x1) = 30 a__U21_A(x1,x2) = 31 a__U22_A(x1) = 30 a__U31_A(x1,x2) = 13 a__U32_A(x1) = 32 a__U41_A(x1,x2,x3) = 30 a__U42_A(x1,x2) = 31 a__U43_A(x1) = 28 a__isNatIList_A(x1) = 45 a__U51_A(x1,x2,x3) = 22 a__U52_A(x1,x2) = 21 a__U53_A(x1) = 32 a__U61_A(x1,x2) = 30 a__length_A(x1) = 31 nil_A = 5 The next rules are strictly ordered: p1, p2, p4, p5, p6, p7, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p23, p24, p25, p26, p27, p28, p30, p31, p32, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p59, p60, p61, p62, p63, p64 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p2: mark#(s(X)) -> mark#(X) p3: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p4: a__U21#(tt(),V1) -> a__isNat#(V1) p5: a__length#(cons(N,L)) -> a__U61#(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) p6: a__U61#(tt(),L) -> a__length#(mark(L)) p7: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1} {p2, p7} {p3, p4} {p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__isNatKind#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: a__isNatKind#_A(x1) = x1 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: mark#_A(x1) = x1 s_A(x1) = x1 + 1 U22_A(x1) = x1 2. max/plus interpretations on natural numbers: mark#_A(x1) = x1 s_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p2: a__U21#(tt(),V1) -> a__isNat#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__isNat#_A(x1) = x1 s_A(x1) = max{54, x1 + 2} a__U21#_A(x1,x2) = max{x1 - 95, x2 + 1} a__isNatKind_A(x1) = 68 tt_A = 68 a__zeros_A = 60 cons_A(x1,x2) = max{59, x2 + 57} |0|_A = 65 zeros_A = 0 a__U11_A(x1,x2) = 68 a__U12_A(x1) = 68 a__isNatList_A(x1) = max{47, x1 + 15} a__U21_A(x1,x2) = max{3, x1} a__U22_A(x1) = max{17, x1} a__isNat_A(x1) = 68 a__U31_A(x1,x2) = max{69, x1 + 18} a__U32_A(x1) = 86 a__U41_A(x1,x2,x3) = max{126, x1 + 35, x3 + 123} a__U42_A(x1,x2) = x2 + 120 a__U43_A(x1) = max{67, x1 + 33} a__isNatIList_A(x1) = max{87, x1 + 67} a__U51_A(x1,x2,x3) = x3 + 71 a__U52_A(x1,x2) = x2 + 70 a__U53_A(x1) = 70 a__U61_A(x1,x2) = max{67, x1 + 3, x2 + 56} a__length_A(x1) = max{68, x1} mark_A(x1) = max{68, x1 + 51} length_A(x1) = x1 a__isNatIListKind_A(x1) = 68 a__and_A(x1,x2) = max{57, x1, x2 + 52} isNatIListKind_A(x1) = 1 nil_A = 69 and_A(x1,x2) = max{x1, x2 + 7} isNat_A(x1) = 3 isNatKind_A(x1) = 0 U11_A(x1,x2) = 68 U12_A(x1) = 37 isNatList_A(x1) = max{16, x1 + 15} U21_A(x1,x2) = max{3, x1} U22_A(x1) = max{17, x1} U31_A(x1,x2) = max{68, x1 + 18} U32_A(x1) = 86 U41_A(x1,x2,x3) = max{x1 + 35, x3 + 123} U42_A(x1,x2) = max{72, x2 + 70} U43_A(x1) = max{67, x1 + 33} isNatIList_A(x1) = max{87, x1 + 66} U51_A(x1,x2,x3) = max{46, x3 + 20} U52_A(x1,x2) = max{68, x2 + 19} U53_A(x1) = 70 U61_A(x1,x2) = max{55, x1 + 3, x2 + 19} 2. max/plus interpretations on natural numbers: a__isNat#_A(x1) = max{1, x1} s_A(x1) = 19 a__U21#_A(x1,x2) = 0 a__isNatKind_A(x1) = 20 tt_A = 8 a__zeros_A = 0 cons_A(x1,x2) = 21 |0|_A = 0 zeros_A = 6 a__U11_A(x1,x2) = 10 a__U12_A(x1) = 9 a__isNatList_A(x1) = 12 a__U21_A(x1,x2) = 17 a__U22_A(x1) = 8 a__isNat_A(x1) = 19 a__U31_A(x1,x2) = 14 a__U32_A(x1) = 13 a__U41_A(x1,x2,x3) = 12 a__U42_A(x1,x2) = 11 a__U43_A(x1) = 9 a__isNatIList_A(x1) = 13 a__U51_A(x1,x2,x3) = 20 a__U52_A(x1,x2) = 10 a__U53_A(x1) = 9 a__U61_A(x1,x2) = 17 a__length_A(x1) = 19 mark_A(x1) = 20 length_A(x1) = 0 a__isNatIListKind_A(x1) = 20 a__and_A(x1,x2) = 20 isNatIListKind_A(x1) = 4 nil_A = 6 and_A(x1,x2) = 20 isNat_A(x1) = 20 isNatKind_A(x1) = 21 U11_A(x1,x2) = 0 U12_A(x1) = 10 isNatList_A(x1) = 0 U21_A(x1,x2) = 16 U22_A(x1) = 7 U31_A(x1,x2) = 14 U32_A(x1) = 13 U41_A(x1,x2,x3) = 11 U42_A(x1,x2) = 10 U43_A(x1) = 0 isNatIList_A(x1) = 10 U51_A(x1,x2,x3) = 19 U52_A(x1,x2) = 9 U53_A(x1) = 6 U61_A(x1,x2) = 16 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__U61#(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) p2: a__U61#(tt(),L) -> a__length#(mark(L)) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),V1) -> a__U12(a__isNatList(V1)) r3: a__U12(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),V) -> a__U32(a__isNatList(V)) r7: a__U32(tt()) -> tt() r8: a__U41(tt(),V1,V2) -> a__U42(a__isNat(V1),V2) r9: a__U42(tt(),V2) -> a__U43(a__isNatIList(V2)) r10: a__U43(tt()) -> tt() r11: a__U51(tt(),V1,V2) -> a__U52(a__isNat(V1),V2) r12: a__U52(tt(),V2) -> a__U53(a__isNatList(V2)) r13: a__U53(tt()) -> tt() r14: a__U61(tt(),L) -> s(a__length(mark(L))) r15: a__and(tt(),X) -> mark(X) r16: a__isNat(|0|()) -> tt() r17: a__isNat(length(V1)) -> a__U11(a__isNatIListKind(V1),V1) r18: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r19: a__isNatIList(V) -> a__U31(a__isNatIListKind(V),V) r20: a__isNatIList(zeros()) -> tt() r21: a__isNatIList(cons(V1,V2)) -> a__U41(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r22: a__isNatIListKind(nil()) -> tt() r23: a__isNatIListKind(zeros()) -> tt() r24: a__isNatIListKind(cons(V1,V2)) -> a__and(a__isNatKind(V1),isNatIListKind(V2)) r25: a__isNatKind(|0|()) -> tt() r26: a__isNatKind(length(V1)) -> a__isNatIListKind(V1) r27: a__isNatKind(s(V1)) -> a__isNatKind(V1) r28: a__isNatList(nil()) -> tt() r29: a__isNatList(cons(V1,V2)) -> a__U51(a__and(a__isNatKind(V1),isNatIListKind(V2)),V1,V2) r30: a__length(nil()) -> |0|() r31: a__length(cons(N,L)) -> a__U61(a__and(a__and(a__isNatList(L),isNatIListKind(L)),and(isNat(N),isNatKind(N))),L) r32: mark(zeros()) -> a__zeros() r33: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r34: mark(U12(X)) -> a__U12(mark(X)) r35: mark(isNatList(X)) -> a__isNatList(X) r36: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r37: mark(U22(X)) -> a__U22(mark(X)) r38: mark(isNat(X)) -> a__isNat(X) r39: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r40: mark(U32(X)) -> a__U32(mark(X)) r41: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r42: mark(U42(X1,X2)) -> a__U42(mark(X1),X2) r43: mark(U43(X)) -> a__U43(mark(X)) r44: mark(isNatIList(X)) -> a__isNatIList(X) r45: mark(U51(X1,X2,X3)) -> a__U51(mark(X1),X2,X3) r46: mark(U52(X1,X2)) -> a__U52(mark(X1),X2) r47: mark(U53(X)) -> a__U53(mark(X)) r48: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r49: mark(length(X)) -> a__length(mark(X)) r50: mark(and(X1,X2)) -> a__and(mark(X1),X2) r51: mark(isNatIListKind(X)) -> a__isNatIListKind(X) r52: mark(isNatKind(X)) -> a__isNatKind(X) r53: mark(cons(X1,X2)) -> cons(mark(X1),X2) r54: mark(|0|()) -> |0|() r55: mark(tt()) -> tt() r56: mark(s(X)) -> s(mark(X)) r57: mark(nil()) -> nil() r58: a__zeros() -> zeros() r59: a__U11(X1,X2) -> U11(X1,X2) r60: a__U12(X) -> U12(X) r61: a__isNatList(X) -> isNatList(X) r62: a__U21(X1,X2) -> U21(X1,X2) r63: a__U22(X) -> U22(X) r64: a__isNat(X) -> isNat(X) r65: a__U31(X1,X2) -> U31(X1,X2) r66: a__U32(X) -> U32(X) r67: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r68: a__U42(X1,X2) -> U42(X1,X2) r69: a__U43(X) -> U43(X) r70: a__isNatIList(X) -> isNatIList(X) r71: a__U51(X1,X2,X3) -> U51(X1,X2,X3) r72: a__U52(X1,X2) -> U52(X1,X2) r73: a__U53(X) -> U53(X) r74: a__U61(X1,X2) -> U61(X1,X2) r75: a__length(X) -> length(X) r76: a__and(X1,X2) -> and(X1,X2) r77: a__isNatIListKind(X) -> isNatIListKind(X) r78: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__length#_A(x1) = max{0, x1 - 42} cons_A(x1,x2) = max{182, x2 + 92} a__U61#_A(x1,x2) = max{x1 - 41, x2 + 2} a__and_A(x1,x2) = max{180, x1, x2 + 45} a__isNatList_A(x1) = max{42, x1 + 6} isNatIListKind_A(x1) = 77 and_A(x1,x2) = max{x1, x2 + 45} isNat_A(x1) = 0 isNatKind_A(x1) = 0 tt_A = 184 mark_A(x1) = max{184, x1 + 44} a__zeros_A = 183 |0|_A = 159 zeros_A = 90 a__U11_A(x1,x2) = max{184, x1 - 1} a__U12_A(x1) = 184 a__U21_A(x1,x2) = 184 a__U22_A(x1) = x1 a__isNat_A(x1) = 184 a__U31_A(x1,x2) = max{43, x2 + 6} a__U32_A(x1) = max{6, x1} a__U41_A(x1,x2,x3) = x3 + 187 a__U42_A(x1,x2) = max{187, x2 + 185} a__U43_A(x1) = max{186, x1 - 1} a__isNatIList_A(x1) = x1 + 95 a__U51_A(x1,x2,x3) = max{187, x1 - 81, x3 + 97} a__U52_A(x1,x2) = max{186, x2 + 97} a__U53_A(x1) = max{185, x1 + 44} a__U61_A(x1,x2) = max{162, x1 - 20, x2 + 21} s_A(x1) = max{161, x1 - 22} a__length_A(x1) = max{163, x1 - 1} length_A(x1) = max{163, x1 - 1} a__isNatIListKind_A(x1) = 184 a__isNatKind_A(x1) = 184 nil_A = 185 U11_A(x1,x2) = max{141, x1 - 1} U12_A(x1) = 140 U21_A(x1,x2) = 184 U22_A(x1) = x1 U31_A(x1,x2) = max{5, x2 - 38} U32_A(x1) = max{5, x1} U41_A(x1,x2,x3) = max{187, x3 + 144} U42_A(x1,x2) = max{143, x2 + 141} U43_A(x1) = max{142, x1 - 1} isNatIList_A(x1) = x1 + 51 U51_A(x1,x2,x3) = max{143, x1 - 81, x3 + 97} U52_A(x1,x2) = max{143, x2 + 53} U53_A(x1) = max{185, x1 + 44} U61_A(x1,x2) = max{119, x1 - 20, x2 + 20} isNatList_A(x1) = x1 + 5 2. max/plus interpretations on natural numbers: a__length#_A(x1) = 0 cons_A(x1,x2) = 8 a__U61#_A(x1,x2) = 1 a__and_A(x1,x2) = 7 a__isNatList_A(x1) = 12 isNatIListKind_A(x1) = 8 and_A(x1,x2) = 6 isNat_A(x1) = 0 isNatKind_A(x1) = 8 tt_A = 2 mark_A(x1) = 7 a__zeros_A = 4 |0|_A = 3 zeros_A = 5 a__U11_A(x1,x2) = 4 a__U12_A(x1) = 3 a__U21_A(x1,x2) = 5 a__U22_A(x1) = max{1, x1} a__isNat_A(x1) = 5 a__U31_A(x1,x2) = 4 a__U32_A(x1) = 3 a__U41_A(x1,x2,x3) = 2 a__U42_A(x1,x2) = 1 a__U43_A(x1) = 3 a__isNatIList_A(x1) = 3 a__U51_A(x1,x2,x3) = 6 a__U52_A(x1,x2) = 1 a__U53_A(x1) = 7 a__U61_A(x1,x2) = 1 s_A(x1) = 0 a__length_A(x1) = 2 length_A(x1) = 1 a__isNatIListKind_A(x1) = 7 a__isNatKind_A(x1) = 7 nil_A = 6 U11_A(x1,x2) = 3 U12_A(x1) = 4 U21_A(x1,x2) = 4 U22_A(x1) = max{0, x1 - 1} U31_A(x1,x2) = 14 U32_A(x1) = 2 U41_A(x1,x2,x3) = 1 U42_A(x1,x2) = 0 U43_A(x1) = 0 isNatIList_A(x1) = x1 + 9 U51_A(x1,x2,x3) = 5 U52_A(x1,x2) = 0 U53_A(x1) = 7 U61_A(x1,x2) = 0 isNatList_A(x1) = max{13, x1 - 2} The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.