YES We show the termination of the TRS R: a__zeros() -> cons(|0|(),zeros()) a__U11(tt(),L) -> s(a__length(mark(L))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) a__isNatList(nil()) -> tt() a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) a__length(nil()) -> |0|() a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) mark(zeros()) -> a__zeros() mark(U11(X1,X2)) -> a__U11(mark(X1),X2) mark(length(X)) -> a__length(mark(X)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(|0|()) -> |0|() mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() a__zeros() -> zeros() a__U11(X1,X2) -> U11(X1,X2) a__length(X) -> length(X) a__and(X1,X2) -> and(X1,X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__U11#(tt(),L) -> mark#(L) p3: a__and#(tt(),X) -> mark#(X) p4: a__isNat#(length(V1)) -> a__isNatList#(V1) p5: a__isNat#(s(V1)) -> a__isNat#(V1) p6: a__isNatIList#(V) -> a__isNatList#(V) p7: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p8: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p9: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p10: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p11: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p12: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNat(N)) p13: a__length#(cons(N,L)) -> a__isNatList#(L) p14: mark#(zeros()) -> a__zeros#() p15: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p16: mark#(U11(X1,X2)) -> mark#(X1) p17: mark#(length(X)) -> a__length#(mark(X)) p18: mark#(length(X)) -> mark#(X) p19: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p20: mark#(and(X1,X2)) -> mark#(X1) p21: mark#(isNat(X)) -> a__isNat#(X) p22: mark#(isNatList(X)) -> a__isNatList#(X) p23: mark#(isNatIList(X)) -> a__isNatIList#(X) p24: mark#(cons(X1,X2)) -> mark#(X1) p25: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p12: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p13: a__isNatIList#(V) -> a__isNatList#(V) p14: mark#(isNatList(X)) -> a__isNatList#(X) p15: mark#(isNat(X)) -> a__isNat#(X) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p18: mark#(length(X)) -> mark#(X) p19: mark#(length(X)) -> a__length#(mark(X)) p20: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNat(N)) p21: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p22: a__U11#(tt(),L) -> mark#(L) p23: mark#(U11(X1,X2)) -> mark#(X1) p24: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = max{x1 + 7, x2 + 89} tt_A = 88 a__length#_A(x1) = max{95, x1 + 30} mark_A(x1) = max{62, x1 + 58} cons_A(x1,x2) = max{x1 + 56, x2 + 60} a__isNatList#_A(x1) = max{71, x1 + 49} a__isNat#_A(x1) = x1 + 1 s_A(x1) = max{5, x1} length_A(x1) = max{77, x1 + 71} a__and#_A(x1,x2) = max{83, x1 - 20, x2 + 56} a__isNat_A(x1) = max{88, x1 - 16} isNatList_A(x1) = x1 + 53 mark#_A(x1) = max{70, x1 + 25} isNatIList_A(x1) = x1 + 69 a__isNatIList#_A(x1) = x1 + 72 isNat_A(x1) = max{30, x1 - 17} and_A(x1,x2) = max{x1 + 19, x2 + 58} a__isNatList_A(x1) = max{61, x1 + 54} a__and_A(x1,x2) = max{x1 + 19, x2 + 58} U11_A(x1,x2) = max{103, x1 + 46, x2 + 73} a__zeros_A = 61 |0|_A = 4 zeros_A = 0 a__U11_A(x1,x2) = max{x1 + 46, x2 + 130} a__length_A(x1) = max{134, x1 + 71} a__isNatIList_A(x1) = x1 + 108 nil_A = 34 2. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = 10 tt_A = 17 a__length#_A(x1) = 10 mark_A(x1) = 19 cons_A(x1,x2) = 17 a__isNatList#_A(x1) = 12 a__isNat#_A(x1) = 12 s_A(x1) = 19 length_A(x1) = 13 a__and#_A(x1,x2) = 0 a__isNat_A(x1) = 19 isNatList_A(x1) = x1 + 23 mark#_A(x1) = 9 isNatIList_A(x1) = max{17, x1 - 7} a__isNatIList#_A(x1) = 8 isNat_A(x1) = 21 and_A(x1,x2) = 9 a__isNatList_A(x1) = 18 a__and_A(x1,x2) = 19 U11_A(x1,x2) = 18 a__zeros_A = 18 |0|_A = 0 zeros_A = 25 a__U11_A(x1,x2) = 19 a__length_A(x1) = 19 a__isNatIList_A(x1) = max{16, x1 + 1} nil_A = 13 The next rules are strictly ordered: p2, p3, p5, p6, p7, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p22, p23, p24 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__isNat#(s(V1)) -> a__isNat#(V1) p3: mark#(s(X)) -> mark#(X) p4: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p4} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = max{x1 - 39, x2 + 1} tt_A = 45 a__length#_A(x1) = max{5, x1 - 44} mark_A(x1) = max{47, x1 + 38} cons_A(x1,x2) = max{x1 + 17, x2 + 45} a__and_A(x1,x2) = max{39, x1 + 9, x2 + 38} a__isNatList_A(x1) = x1 + 11 isNat_A(x1) = max{3, x1 - 26} a__zeros_A = 46 |0|_A = 28 zeros_A = 0 a__U11_A(x1,x2) = max{x1 + 3, x2 + 39} s_A(x1) = max{37, x1} a__length_A(x1) = x1 a__isNat_A(x1) = max{47, x1 + 11} length_A(x1) = x1 a__isNatIList_A(x1) = x1 + 46 isNatIList_A(x1) = x1 + 46 nil_A = 48 U11_A(x1,x2) = max{x1 + 3, x2 + 38} isNatList_A(x1) = x1 + 1 and_A(x1,x2) = max{19, x1 + 9, x2} 2. max/plus interpretations on natural numbers: a__U11#_A(x1,x2) = 0 tt_A = 4 a__length#_A(x1) = 0 mark_A(x1) = 5 cons_A(x1,x2) = 5 a__and_A(x1,x2) = 5 a__isNatList_A(x1) = 5 isNat_A(x1) = 6 a__zeros_A = 4 |0|_A = 0 zeros_A = 0 a__U11_A(x1,x2) = 3 s_A(x1) = 4 a__length_A(x1) = max{5, x1 - 1} a__isNat_A(x1) = 5 length_A(x1) = max{5, x1 - 1} a__isNatIList_A(x1) = max{10, x1 + 2} isNatIList_A(x1) = max{3, x1 + 2} nil_A = 2 U11_A(x1,x2) = 0 isNatList_A(x1) = 0 and_A(x1,x2) = 4 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(s(V1)) -> a__isNat#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__isNat#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: a__isNat#_A(x1) = x1 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: mark#_A(x1) = x1 s_A(x1) = max{2, x1 + 1} 2. max/plus interpretations on natural numbers: mark#_A(x1) = x1 s_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.