YES We show the termination of the TRS R: a__zeros() -> cons(|0|(),zeros()) a__U11(tt()) -> tt() a__U21(tt()) -> tt() a__U31(tt()) -> tt() a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) a__U42(tt()) -> tt() a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) a__U52(tt()) -> tt() a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) a__U62(tt()) -> tt() a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) a__U72(tt(),L) -> s(a__length(mark(L))) a__U81(tt()) -> nil() a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) a__isNat(|0|()) -> tt() a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__isNatIList(V) -> a__U31(a__isNatList(V)) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) a__isNatList(nil()) -> tt() a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) a__length(nil()) -> |0|() a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) mark(zeros()) -> a__zeros() mark(U11(X)) -> a__U11(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X)) -> a__U31(mark(X)) mark(U41(X1,X2)) -> a__U41(mark(X1),X2) mark(U42(X)) -> a__U42(mark(X)) mark(isNatIList(X)) -> a__isNatIList(X) mark(U51(X1,X2)) -> a__U51(mark(X1),X2) mark(U52(X)) -> a__U52(mark(X)) mark(isNatList(X)) -> a__isNatList(X) mark(U61(X1,X2)) -> a__U61(mark(X1),X2) mark(U62(X)) -> a__U62(mark(X)) mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) mark(U72(X1,X2)) -> a__U72(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(length(X)) -> a__length(mark(X)) mark(U81(X)) -> a__U81(mark(X)) mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(|0|()) -> |0|() mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() a__zeros() -> zeros() a__U11(X) -> U11(X) a__U21(X) -> U21(X) a__U31(X) -> U31(X) a__U41(X1,X2) -> U41(X1,X2) a__U42(X) -> U42(X) a__isNatIList(X) -> isNatIList(X) a__U51(X1,X2) -> U51(X1,X2) a__U52(X) -> U52(X) a__isNatList(X) -> isNatList(X) a__U61(X1,X2) -> U61(X1,X2) a__U62(X) -> U62(X) a__U71(X1,X2,X3) -> U71(X1,X2,X3) a__U72(X1,X2) -> U72(X1,X2) a__isNat(X) -> isNat(X) a__length(X) -> length(X) a__U81(X) -> U81(X) a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) a__take(X1,X2) -> take(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U41#(tt(),V2) -> a__U42#(a__isNatIList(V2)) p2: a__U41#(tt(),V2) -> a__isNatIList#(V2) p3: a__U51#(tt(),V2) -> a__U52#(a__isNatList(V2)) p4: a__U51#(tt(),V2) -> a__isNatList#(V2) p5: a__U61#(tt(),V2) -> a__U62#(a__isNatIList(V2)) p6: a__U61#(tt(),V2) -> a__isNatIList#(V2) p7: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p8: a__U71#(tt(),L,N) -> a__isNat#(N) p9: a__U72#(tt(),L) -> a__length#(mark(L)) p10: a__U72#(tt(),L) -> mark#(L) p11: a__U91#(tt(),IL,M,N) -> a__U92#(a__isNat(M),IL,M,N) p12: a__U91#(tt(),IL,M,N) -> a__isNat#(M) p13: a__U92#(tt(),IL,M,N) -> a__U93#(a__isNat(N),IL,M,N) p14: a__U92#(tt(),IL,M,N) -> a__isNat#(N) p15: a__U93#(tt(),IL,M,N) -> mark#(N) p16: a__isNat#(length(V1)) -> a__U11#(a__isNatList(V1)) p17: a__isNat#(length(V1)) -> a__isNatList#(V1) p18: a__isNat#(s(V1)) -> a__U21#(a__isNat(V1)) p19: a__isNat#(s(V1)) -> a__isNat#(V1) p20: a__isNatIList#(V) -> a__U31#(a__isNatList(V)) p21: a__isNatIList#(V) -> a__isNatList#(V) p22: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__isNat(V1),V2) p23: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p24: a__isNatList#(cons(V1,V2)) -> a__U51#(a__isNat(V1),V2) p25: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p26: a__isNatList#(take(V1,V2)) -> a__U61#(a__isNat(V1),V2) p27: a__isNatList#(take(V1,V2)) -> a__isNat#(V1) p28: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p29: a__length#(cons(N,L)) -> a__isNatList#(L) p30: a__take#(|0|(),IL) -> a__U81#(a__isNatIList(IL)) p31: a__take#(|0|(),IL) -> a__isNatIList#(IL) p32: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p33: a__take#(s(M),cons(N,IL)) -> a__isNatIList#(IL) p34: mark#(zeros()) -> a__zeros#() p35: mark#(U11(X)) -> a__U11#(mark(X)) p36: mark#(U11(X)) -> mark#(X) p37: mark#(U21(X)) -> a__U21#(mark(X)) p38: mark#(U21(X)) -> mark#(X) p39: mark#(U31(X)) -> a__U31#(mark(X)) p40: mark#(U31(X)) -> mark#(X) p41: mark#(U41(X1,X2)) -> a__U41#(mark(X1),X2) p42: mark#(U41(X1,X2)) -> mark#(X1) p43: mark#(U42(X)) -> a__U42#(mark(X)) p44: mark#(U42(X)) -> mark#(X) p45: mark#(isNatIList(X)) -> a__isNatIList#(X) p46: mark#(U51(X1,X2)) -> a__U51#(mark(X1),X2) p47: mark#(U51(X1,X2)) -> mark#(X1) p48: mark#(U52(X)) -> a__U52#(mark(X)) p49: mark#(U52(X)) -> mark#(X) p50: mark#(isNatList(X)) -> a__isNatList#(X) p51: mark#(U61(X1,X2)) -> a__U61#(mark(X1),X2) p52: mark#(U61(X1,X2)) -> mark#(X1) p53: mark#(U62(X)) -> a__U62#(mark(X)) p54: mark#(U62(X)) -> mark#(X) p55: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p56: mark#(U71(X1,X2,X3)) -> mark#(X1) p57: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p58: mark#(U72(X1,X2)) -> mark#(X1) p59: mark#(isNat(X)) -> a__isNat#(X) p60: mark#(length(X)) -> a__length#(mark(X)) p61: mark#(length(X)) -> mark#(X) p62: mark#(U81(X)) -> a__U81#(mark(X)) p63: mark#(U81(X)) -> mark#(X) p64: mark#(U91(X1,X2,X3,X4)) -> a__U91#(mark(X1),X2,X3,X4) p65: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p66: mark#(U92(X1,X2,X3,X4)) -> a__U92#(mark(X1),X2,X3,X4) p67: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p68: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p69: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p70: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p71: mark#(take(X1,X2)) -> mark#(X1) p72: mark#(take(X1,X2)) -> mark#(X2) p73: mark#(cons(X1,X2)) -> mark#(X1) p74: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p7, p9, p10, p11, p13, p15, p28, p32, p36, p38, p40, p42, p44, p47, p49, p52, p54, p55, p56, p57, p58, p60, p61, p63, p64, p65, p66, p67, p68, p69, p70, p71, p72, p73, p74} {p2, p4, p6, p17, p19, p21, p22, p23, p24, p25, p26, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U93#(tt(),IL,M,N) -> mark#(N) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p7: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p8: a__U91#(tt(),IL,M,N) -> a__U92#(a__isNat(M),IL,M,N) p9: a__U92#(tt(),IL,M,N) -> a__U93#(a__isNat(N),IL,M,N) p10: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p11: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p12: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p13: mark#(U92(X1,X2,X3,X4)) -> a__U92#(mark(X1),X2,X3,X4) p14: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p15: mark#(U91(X1,X2,X3,X4)) -> a__U91#(mark(X1),X2,X3,X4) p16: mark#(U81(X)) -> mark#(X) p17: mark#(length(X)) -> mark#(X) p18: mark#(length(X)) -> a__length#(mark(X)) p19: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p20: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p21: a__U72#(tt(),L) -> mark#(L) p22: mark#(U72(X1,X2)) -> mark#(X1) p23: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p24: a__U72#(tt(),L) -> a__length#(mark(L)) p25: mark#(U71(X1,X2,X3)) -> mark#(X1) p26: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p27: mark#(U62(X)) -> mark#(X) p28: mark#(U61(X1,X2)) -> mark#(X1) p29: mark#(U52(X)) -> mark#(X) p30: mark#(U51(X1,X2)) -> mark#(X1) p31: mark#(U42(X)) -> mark#(X) p32: mark#(U41(X1,X2)) -> mark#(X1) p33: mark#(U31(X)) -> mark#(X) p34: mark#(U21(X)) -> mark#(X) p35: mark#(U11(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = max{x2 + 53, x3 + 85, x4 + 2} tt_A = 2 mark#_A(x1) = max{85, x1 + 1} s_A(x1) = max{85, x1} cons_A(x1,x2) = max{223, x1 + 200, x2} take_A(x1,x2) = max{247, x1 + 224, x2 + 81} a__take#_A(x1,x2) = max{x1 + 224, x2 + 54} mark_A(x1) = max{22, x1} a__U91#_A(x1,x2,x3,x4) = max{x1 + 64, x2 + 54, x3 + 86, x4 + 253} a__isNatIList_A(x1) = max{159, x1 - 10} a__U92#_A(x1,x2,x3,x4) = max{252, x2 + 54, x3 + 86, x4 + 251} a__isNat_A(x1) = max{48, x1 - 37} U93_A(x1,x2,x3,x4) = max{248, x1 + 203, x2 + 81, x3 + 224, x4 + 223} U92_A(x1,x2,x3,x4) = max{251, x1 + 227, x2 + 81, x3 + 224, x4 + 250} U91_A(x1,x2,x3,x4) = max{305, x1 + 64, x2 + 81, x3 + 224, x4 + 253} U81_A(x1) = max{247, x1 + 85} length_A(x1) = max{197, x1} a__length#_A(x1) = x1 + 1 a__U71#_A(x1,x2,x3) = max{199, x1 - 157, x2 + 1} a__isNatList_A(x1) = max{159, x1 - 89} a__U72#_A(x1,x2) = max{86, x2 + 1} U72_A(x1,x2) = max{198, x1 + 19, x2} U71_A(x1,x2,x3) = max{x1 + 64, x2, x3 + 198} U62_A(x1) = max{1, x1} U61_A(x1,x2) = max{159, x1 + 85, x2 - 9} U52_A(x1) = x1 U51_A(x1,x2) = max{159, x1 + 85, x2 - 89} U42_A(x1) = x1 U41_A(x1,x2) = max{160, x1 + 85, x2 - 10} U31_A(x1) = max{23, x1} U21_A(x1) = x1 U11_A(x1) = max{23, x1 + 1} a__zeros_A = 225 |0|_A = 24 zeros_A = 225 a__U11_A(x1) = max{23, x1 + 1} a__U21_A(x1) = max{2, x1} a__U31_A(x1) = max{23, x1} a__U41_A(x1,x2) = max{160, x1 + 85, x2 - 10} a__U42_A(x1) = x1 a__U51_A(x1,x2) = max{159, x1 + 85, x2 - 89} a__U52_A(x1) = x1 a__U61_A(x1,x2) = max{159, x1 + 85, x2 - 9} a__U62_A(x1) = max{1, x1} a__U71_A(x1,x2,x3) = max{x1 + 64, x2, x3 + 198} a__U72_A(x1,x2) = max{198, x1 + 19, x2} a__length_A(x1) = max{197, x1} a__U81_A(x1) = max{247, x1 + 85} nil_A = 24 a__U91_A(x1,x2,x3,x4) = max{305, x1 + 64, x2 + 81, x3 + 224, x4 + 253} a__U92_A(x1,x2,x3,x4) = max{251, x1 + 227, x2 + 81, x3 + 224, x4 + 250} a__U93_A(x1,x2,x3,x4) = max{248, x1 + 203, x2 + 81, x3 + 224, x4 + 223} a__take_A(x1,x2) = max{247, x1 + 224, x2 + 81} isNatIList_A(x1) = max{159, x1 - 10} isNatList_A(x1) = max{159, x1 - 89} isNat_A(x1) = max{48, x1 - 37} 2. max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = 3 tt_A = 2 mark#_A(x1) = 2 s_A(x1) = 8 cons_A(x1,x2) = 3 take_A(x1,x2) = 8 a__take#_A(x1,x2) = 1 mark_A(x1) = 14 a__U91#_A(x1,x2,x3,x4) = 1 a__isNatIList_A(x1) = 10 a__U92#_A(x1,x2,x3,x4) = 0 a__isNat_A(x1) = 8 U93_A(x1,x2,x3,x4) = 3 U92_A(x1,x2,x3,x4) = 5 U91_A(x1,x2,x3,x4) = 8 U81_A(x1) = 14 length_A(x1) = 12 a__length#_A(x1) = 2 a__U71#_A(x1,x2,x3) = 2 a__isNatList_A(x1) = 13 a__U72#_A(x1,x2) = 2 U72_A(x1,x2) = 9 U71_A(x1,x2,x3) = 11 U62_A(x1) = 2 U61_A(x1,x2) = 0 U52_A(x1) = max{0, x1 - 3} U51_A(x1,x2) = 11 U42_A(x1) = max{0, x1 - 10} U41_A(x1,x2) = 1 U31_A(x1) = 1 U21_A(x1) = 8 U11_A(x1) = 0 a__zeros_A = 14 |0|_A = 12 zeros_A = 14 a__U11_A(x1) = 8 a__U21_A(x1) = 8 a__U31_A(x1) = 2 a__U41_A(x1,x2) = 2 a__U42_A(x1) = max{2, x1 - 9} a__U51_A(x1,x2) = 12 a__U52_A(x1) = max{2, x1 - 2} a__U61_A(x1,x2) = 3 a__U62_A(x1) = 2 a__U71_A(x1,x2,x3) = 12 a__U72_A(x1,x2) = 10 a__length_A(x1) = 13 a__U81_A(x1) = 14 nil_A = 1 a__U91_A(x1,x2,x3,x4) = 8 a__U92_A(x1,x2,x3,x4) = 5 a__U93_A(x1,x2,x3,x4) = 4 a__take_A(x1,x2) = 9 isNatIList_A(x1) = 0 isNatList_A(x1) = 13 isNat_A(x1) = 8 The next rules are strictly ordered: p1, p3, p4, p5, p6, p8, p9, p10, p11, p12, p13, p14, p15, p16, p22, p25, p28, p30, p32 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p3: mark#(length(X)) -> mark#(X) p4: mark#(length(X)) -> a__length#(mark(X)) p5: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p6: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p7: a__U72#(tt(),L) -> mark#(L) p8: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p9: a__U72#(tt(),L) -> a__length#(mark(L)) p10: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p11: mark#(U62(X)) -> mark#(X) p12: mark#(U52(X)) -> mark#(X) p13: mark#(U42(X)) -> mark#(X) p14: mark#(U31(X)) -> mark#(X) p15: mark#(U21(X)) -> mark#(X) p16: mark#(U11(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(U11(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X)) -> mark#(X) p5: mark#(U42(X)) -> mark#(X) p6: mark#(U52(X)) -> mark#(X) p7: mark#(U62(X)) -> mark#(X) p8: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p9: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p10: a__U72#(tt(),L) -> a__length#(mark(L)) p11: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p12: a__U72#(tt(),L) -> mark#(L) p13: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p14: mark#(length(X)) -> a__length#(mark(X)) p15: mark#(length(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 5 s_A(x1) = x1 U11_A(x1) = x1 U21_A(x1) = x1 U31_A(x1) = x1 U42_A(x1) = x1 U52_A(x1) = x1 U62_A(x1) = max{1, x1} U71_A(x1,x2,x3) = max{88, x1 + 27, x2 + 66} a__U71#_A(x1,x2,x3) = max{x1 - 54, x2 + 6} mark_A(x1) = x1 + 23 tt_A = 19 a__U72#_A(x1,x2) = max{x1 - 14, x2 + 6} a__isNat_A(x1) = 19 a__length#_A(x1) = max{1, x1 - 17} cons_A(x1,x2) = max{25, x2 + 23} a__isNatList_A(x1) = 19 U72_A(x1,x2) = max{x1 + 63, x2 + 65} length_A(x1) = x1 + 64 a__zeros_A = 26 |0|_A = 44 zeros_A = 3 a__U11_A(x1) = x1 a__U21_A(x1) = x1 a__U31_A(x1) = x1 a__U41_A(x1,x2) = max{19, x1 - 3} a__U42_A(x1) = x1 a__isNatIList_A(x1) = 19 a__U51_A(x1,x2) = max{19, x1} a__U52_A(x1) = x1 a__U61_A(x1,x2) = max{1, x1} a__U62_A(x1) = max{2, x1} a__U71_A(x1,x2,x3) = max{88, x1 + 27, x2 + 87} a__U72_A(x1,x2) = max{x1 + 63, x2 + 87} a__length_A(x1) = x1 + 64 a__U81_A(x1) = max{24, x1 + 1} nil_A = 21 a__U91_A(x1,x2,x3,x4) = x1 + 25 a__U92_A(x1,x2,x3,x4) = x1 + 25 a__U93_A(x1,x2,x3,x4) = x1 + 25 take_A(x1,x2) = 21 a__take_A(x1,x2) = 44 U41_A(x1,x2) = max{19, x1 - 3} isNatIList_A(x1) = 0 U51_A(x1,x2) = max{1, x1} U61_A(x1,x2) = x1 U81_A(x1) = x1 + 1 U91_A(x1,x2,x3,x4) = x1 + 25 U92_A(x1,x2,x3,x4) = x1 + 25 U93_A(x1,x2,x3,x4) = x1 + 25 isNatList_A(x1) = 0 isNat_A(x1) = 0 2. max/plus interpretations on natural numbers: mark#_A(x1) = 8 s_A(x1) = max{0, x1 - 3} U11_A(x1) = max{0, x1 - 1} U21_A(x1) = max{0, x1 - 4} U31_A(x1) = max{0, x1 - 2} U42_A(x1) = max{0, x1 - 1} U52_A(x1) = 5 U62_A(x1) = 1 U71_A(x1,x2,x3) = 0 a__U71#_A(x1,x2,x3) = 0 mark_A(x1) = x1 + 12 tt_A = 3 a__U72#_A(x1,x2) = 0 a__isNat_A(x1) = 11 a__length#_A(x1) = 0 cons_A(x1,x2) = 3 a__isNatList_A(x1) = 8 U72_A(x1,x2) = 0 length_A(x1) = 8 a__zeros_A = 8 |0|_A = 7 zeros_A = 7 a__U11_A(x1) = max{10, x1 - 1} a__U21_A(x1) = max{4, x1 - 4} a__U31_A(x1) = max{6, x1 - 2} a__U41_A(x1,x2) = 5 a__U42_A(x1) = max{4, x1 - 1} a__isNatIList_A(x1) = 6 a__U51_A(x1,x2) = 8 a__U52_A(x1) = 6 a__U61_A(x1,x2) = 7 a__U62_A(x1) = 6 a__U71_A(x1,x2,x3) = 7 a__U72_A(x1,x2) = 6 a__length_A(x1) = 8 a__U81_A(x1) = 8 nil_A = 10 a__U91_A(x1,x2,x3,x4) = 12 a__U92_A(x1,x2,x3,x4) = 11 a__U93_A(x1,x2,x3,x4) = 10 take_A(x1,x2) = 2 a__take_A(x1,x2) = 13 U41_A(x1,x2) = 0 isNatIList_A(x1) = 0 U51_A(x1,x2) = 8 U61_A(x1,x2) = 0 U81_A(x1) = 0 U91_A(x1,x2,x3,x4) = 1 U92_A(x1,x2,x3,x4) = 0 U93_A(x1,x2,x3,x4) = 0 isNatList_A(x1) = 5 isNat_A(x1) = 0 The next rules are strictly ordered: p8, p12, p13, p14, p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(U11(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X)) -> mark#(X) p5: mark#(U42(X)) -> mark#(X) p6: mark#(U52(X)) -> mark#(X) p7: mark#(U62(X)) -> mark#(X) p8: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p9: a__U72#(tt(),L) -> a__length#(mark(L)) p10: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} {p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(U62(X)) -> mark#(X) p3: mark#(U52(X)) -> mark#(X) p4: mark#(U42(X)) -> mark#(X) p5: mark#(U31(X)) -> mark#(X) p6: mark#(U21(X)) -> mark#(X) p7: mark#(U11(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: mark#_A(x1) = x1 s_A(x1) = x1 + 1 U62_A(x1) = x1 + 1 U52_A(x1) = x1 + 1 U42_A(x1) = x1 + 1 U31_A(x1) = max{2, x1 + 1} U21_A(x1) = x1 + 1 U11_A(x1) = x1 + 1 2. max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1} s_A(x1) = x1 + 2 U62_A(x1) = x1 + 2 U52_A(x1) = x1 + 2 U42_A(x1) = x1 + 2 U31_A(x1) = 0 U21_A(x1) = x1 + 2 U11_A(x1) = x1 + 2 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p2: a__U72#(tt(),L) -> a__length#(mark(L)) p3: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U71#_A(x1,x2,x3) = max{x1 - 8, x2 + 21} tt_A = 34 a__U72#_A(x1,x2) = max{25, x2 + 13} a__isNat_A(x1) = max{36, x1 - 12} a__length#_A(x1) = x1 + 12 mark_A(x1) = max{12, x1} cons_A(x1,x2) = max{x1 - 5, x2 + 10} a__isNatList_A(x1) = max{9, x1 + 8} a__zeros_A = 11 |0|_A = 16 zeros_A = 0 a__U11_A(x1) = max{35, x1 - 22} a__U21_A(x1) = max{13, x1} a__U31_A(x1) = 34 a__U41_A(x1,x2) = max{38, x1 + 2, x2 + 15} a__U42_A(x1) = max{35, x1 - 2} a__isNatIList_A(x1) = max{39, x1 + 6} a__U51_A(x1,x2) = x2 + 18 a__U52_A(x1) = max{15, x1 + 3} a__U61_A(x1,x2) = max{39, x1 - 4, x2 + 8} a__U62_A(x1) = max{13, x1} a__U71_A(x1,x2,x3) = max{x1, x2 + 10, x3 - 6} a__U72_A(x1,x2) = max{x1 - 3, x2 + 10} s_A(x1) = max{30, x1 + 10} a__length_A(x1) = x1 a__U81_A(x1) = 32 nil_A = 26 a__U91_A(x1,x2,x3,x4) = max{48, x1 - 45, x2 + 10, x3 + 29, x4 - 5} a__U92_A(x1,x2,x3,x4) = max{x1 + 11, x2 + 10, x3 + 29, x4 - 5} a__U93_A(x1,x2,x3,x4) = max{x1 + 7, x2 + 10, x3 + 29, x4 - 5} take_A(x1,x2) = max{31, x1 + 19, x2} a__take_A(x1,x2) = max{31, x1 + 19, x2} U11_A(x1) = max{35, x1 - 22} U21_A(x1) = max{13, x1} U31_A(x1) = 34 U41_A(x1,x2) = max{38, x1 + 2, x2 + 15} U42_A(x1) = max{35, x1 - 2} isNatIList_A(x1) = max{39, x1 + 6} U51_A(x1,x2) = x2 + 18 U52_A(x1) = max{15, x1 + 3} U61_A(x1,x2) = max{39, x1 - 4, x2 + 8} U62_A(x1) = max{13, x1} U71_A(x1,x2,x3) = max{x1, x2 + 10, x3 - 6} U72_A(x1,x2) = max{x1 - 3, x2 + 10} length_A(x1) = x1 U81_A(x1) = 32 U91_A(x1,x2,x3,x4) = max{48, x1 - 45, x2 + 10, x3 + 29, x4 - 5} U92_A(x1,x2,x3,x4) = max{x1 + 11, x2 + 10, x3 + 29, x4 - 5} U93_A(x1,x2,x3,x4) = max{x1 + 7, x2 + 10, x3 + 29, x4 - 5} isNatList_A(x1) = x1 + 8 isNat_A(x1) = max{36, x1 - 12} 2. max/plus interpretations on natural numbers: a__U71#_A(x1,x2,x3) = 0 tt_A = 3 a__U72#_A(x1,x2) = 1 a__isNat_A(x1) = 22 a__length#_A(x1) = max{2, x1 - 15} mark_A(x1) = 24 cons_A(x1,x2) = 16 a__isNatList_A(x1) = 14 a__zeros_A = 25 |0|_A = 0 zeros_A = 26 a__U11_A(x1) = 23 a__U21_A(x1) = 21 a__U31_A(x1) = 4 a__U41_A(x1,x2) = 22 a__U42_A(x1) = 23 a__isNatIList_A(x1) = 23 a__U51_A(x1,x2) = 1 a__U52_A(x1) = 4 a__U61_A(x1,x2) = 5 a__U62_A(x1) = 4 a__U71_A(x1,x2,x3) = 18 a__U72_A(x1,x2) = 17 s_A(x1) = 0 a__length_A(x1) = 23 a__U81_A(x1) = 20 nil_A = 20 a__U91_A(x1,x2,x3,x4) = 20 a__U92_A(x1,x2,x3,x4) = 19 a__U93_A(x1,x2,x3,x4) = 18 take_A(x1,x2) = 20 a__take_A(x1,x2) = 21 U11_A(x1) = 2 U21_A(x1) = 0 U31_A(x1) = 0 U41_A(x1,x2) = 21 U42_A(x1) = 23 isNatIList_A(x1) = 0 U51_A(x1,x2) = 0 U52_A(x1) = 3 U61_A(x1,x2) = 0 U62_A(x1) = 3 U71_A(x1,x2,x3) = 0 U72_A(x1,x2) = 17 length_A(x1) = 2 U81_A(x1) = 19 U91_A(x1,x2,x3,x4) = 19 U92_A(x1,x2,x3,x4) = 0 U93_A(x1,x2,x3,x4) = 0 isNatList_A(x1) = 14 isNat_A(x1) = 21 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U41#(tt(),V2) -> a__isNatIList#(V2) p2: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p3: a__isNat#(s(V1)) -> a__isNat#(V1) p4: a__isNat#(length(V1)) -> a__isNatList#(V1) p5: a__isNatList#(take(V1,V2)) -> a__isNat#(V1) p6: a__isNatList#(take(V1,V2)) -> a__U61#(a__isNat(V1),V2) p7: a__U61#(tt(),V2) -> a__isNatIList#(V2) p8: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__isNat(V1),V2) p9: a__isNatIList#(V) -> a__isNatList#(V) p10: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p11: a__isNatList#(cons(V1,V2)) -> a__U51#(a__isNat(V1),V2) p12: a__U51#(tt(),V2) -> a__isNatList#(V2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r2, r3, r4, r5, r6, r7, r8, r9, r10, r17, r18, r19, r20, r21, r22, r23, r24, r25, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r70 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: a__U41#_A(x1,x2) = max{19, x1, x2 + 9} tt_A = 3 a__isNatIList#_A(x1) = x1 + 8 cons_A(x1,x2) = max{x1 + 14, x2 + 16} a__isNat#_A(x1) = x1 + 11 s_A(x1) = x1 + 3 length_A(x1) = x1 + 5 a__isNatList#_A(x1) = x1 take_A(x1,x2) = max{x1 + 12, x2 + 10} a__U61#_A(x1,x2) = max{x1 - 20, x2 + 9} a__isNat_A(x1) = max{19, x1 + 16} a__U51#_A(x1,x2) = max{13, x1 - 4, x2 + 1} a__U42_A(x1) = x1 + 2 U42_A(x1) = x1 + 1 a__U31_A(x1) = 4 a__U41_A(x1,x2) = max{x1 - 18, x2 + 8} a__isNatIList_A(x1) = x1 + 5 U31_A(x1) = 4 U41_A(x1,x2) = max{x1 - 18, x2 + 7} a__U52_A(x1) = max{4, x1 - 9} a__U62_A(x1) = max{4, x1 + 1} a__isNatList_A(x1) = x1 + 19 zeros_A = 0 isNatIList_A(x1) = x1 U52_A(x1) = max{0, x1 - 10} U62_A(x1) = x1 a__U51_A(x1,x2) = max{x1 + 13, x2 + 11} a__U61_A(x1,x2) = max{x1 + 9, x2 + 7} U51_A(x1,x2) = max{12, x1, x2 + 10} U61_A(x1,x2) = max{8, x1, x2 + 6} a__U11_A(x1) = x1 + 1 a__U21_A(x1) = max{18, x1 - 3} nil_A = 0 U11_A(x1) = x1 U21_A(x1) = max{0, x1 - 4} isNatList_A(x1) = x1 + 11 |0|_A = 0 isNat_A(x1) = x1 + 15 2. max/plus interpretations on natural numbers: a__U41#_A(x1,x2) = 0 tt_A = 4 a__isNatIList#_A(x1) = max{3, x1 + 2} cons_A(x1,x2) = 1 a__isNat#_A(x1) = x1 + 2 s_A(x1) = x1 + 4 length_A(x1) = x1 a__isNatList#_A(x1) = max{1, x1} take_A(x1,x2) = 1 a__U61#_A(x1,x2) = 2 a__isNat_A(x1) = 2 a__U51#_A(x1,x2) = 2 a__U42_A(x1) = x1 + 5 U42_A(x1) = x1 + 6 a__U31_A(x1) = 3 a__U41_A(x1,x2) = 4 a__isNatIList_A(x1) = x1 + 2 U31_A(x1) = 2 U41_A(x1,x2) = 0 a__U52_A(x1) = 5 a__U62_A(x1) = 5 a__isNatList_A(x1) = x1 zeros_A = 3 isNatIList_A(x1) = x1 + 3 U52_A(x1) = 6 U62_A(x1) = max{6, x1} a__U51_A(x1,x2) = 2 a__U61_A(x1,x2) = 2 U51_A(x1,x2) = 3 U61_A(x1,x2) = 3 a__U11_A(x1) = x1 + 3 a__U21_A(x1) = 5 nil_A = 5 U11_A(x1) = x1 + 4 U21_A(x1) = 6 isNatList_A(x1) = x1 + 1 |0|_A = 5 isNat_A(x1) = max{3, x1 + 1} The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 We remove them from the problem. Then no dependency pair remains.