YES We show the termination of the TRS R: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) p2: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) p3: f#(a(),f(a(),x)) -> f#(a(),a()) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) p2: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: f#_A(x1,x2) = max{0, x1 - 24, x2 - 8} a_A = 23 f_A(x1,x2) = max{1, x1 - 14} 2. max/plus interpretations on natural numbers: f#_A(x1,x2) = 0 a_A = 0 f_A(x1,x2) = 0 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: f#_A(x1,x2) = max{4, x1, x2 + 1} a_A = 5 f_A(x1,x2) = max{2, x1 - 3} 2. max/plus interpretations on natural numbers: f#_A(x1,x2) = 0 a_A = 0 f_A(x1,x2) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.