YES We show the termination of the TRS R: f(x,f(a(),a())) -> f(f(f(a(),a()),a()),f(x,a())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,f(a(),a())) -> f#(f(f(a(),a()),a()),f(x,a())) p2: f#(x,f(a(),a())) -> f#(f(a(),a()),a()) p3: f#(x,f(a(),a())) -> f#(x,a()) and R consists of: r1: f(x,f(a(),a())) -> f(f(f(a(),a()),a()),f(x,a())) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,f(a(),a())) -> f#(f(f(a(),a()),a()),f(x,a())) and R consists of: r1: f(x,f(a(),a())) -> f(f(f(a(),a()),a()),f(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. max/plus interpretations on natural numbers: f#_A(x1,x2) = max{2, x1, x2 - 2} f_A(x1,x2) = max{0, x1 - 8, x2 - 12} a_A = 13 2. max/plus interpretations on natural numbers: f#_A(x1,x2) = 0 f_A(x1,x2) = 0 a_A = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.