YES We show the termination of the TRS R: and(false(),false()) -> false() and(true(),false()) -> false() and(false(),true()) -> false() and(true(),true()) -> true() eq(nil(),nil()) -> true() eq(cons(T,L),nil()) -> false() eq(nil(),cons(T,L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(var(L),var(Lp)) -> eq(L,Lp) eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(apply(T,S),var(L)) -> false() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(lambda(X,T),var(L)) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) if(true(),var(K),var(L)) -> var(K) if(false(),var(K),var(L)) -> var(L) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> and#(eq(T,Tp),eq(L,Lp)) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p3: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p4: eq#(var(L),var(Lp)) -> eq#(L,Lp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> and#(eq(T,Tp),eq(S,Sp)) p6: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p7: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p8: eq#(lambda(X,T),lambda(Xp,Tp)) -> and#(eq(T,Tp),eq(X,Xp)) p9: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p10: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p11: ren#(var(L),var(K),var(Lp)) -> if#(eq(L,Lp),var(K),var(Lp)) p12: ren#(var(L),var(K),var(Lp)) -> eq#(L,Lp) p13: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p14: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p15: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p16: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p13, p14, p15, p16} {p2, p3, p4, p6, p7, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p4: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: ren#_A(x1,x2,x3) = x3 lambda_A(x1,x2) = x2 + 6 var_A(x1) = 5 cons_A(x1,x2) = 5 nil_A() = 7 ren_A(x1,x2,x3) = x3 apply_A(x1,x2) = x1 + x2 + 5 and_A(x1,x2) = 3 false_A() = 2 true_A() = 1 eq_A(x1,x2) = 4 if_A(x1,x2,x3) = 5 precedence: ren# = cons = nil = ren = apply = and = true = eq > lambda = var = false = if partial status: pi(ren#) = [] pi(lambda) = [] pi(var) = [] pi(cons) = [] pi(nil) = [] pi(ren) = [] pi(apply) = [] pi(and) = [] pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: ren#_A(x1,x2,x3) = x2 + x3 + 2 lambda_A(x1,x2) = x2 + 3 var_A(x1) = 0 cons_A(x1,x2) = x1 + 4 nil_A() = 4 apply_A(x1,x2) = x1 + x2 + 1 precedence: ren# = lambda = var = cons = nil = apply partial status: pi(ren#) = [2, 3] pi(lambda) = [2] pi(var) = [] pi(cons) = [] pi(nil) = [] pi(apply) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: ren#_A(x1,x2,x3) = x3 apply_A(x1,x2) = x1 + x2 + 1 precedence: ren# = apply partial status: pi(ren#) = [] pi(apply) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: ren#_A(x1,x2,x3) = x1 + x2 + x3 + 2 apply_A(x1,x2) = x1 + x2 + 1 precedence: ren# = apply partial status: pi(ren#) = [2] pi(apply) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p6: eq#(var(L),var(Lp)) -> eq#(L,Lp) p7: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x2 cons_A(x1,x2) = x1 + x2 + 1 lambda_A(x1,x2) = x1 + x2 + 1 apply_A(x1,x2) = x1 + x2 + 1 var_A(x1) = x1 + 1 precedence: eq# = cons = lambda = apply = var partial status: pi(eq#) = [] pi(cons) = [2] pi(lambda) = [2] pi(apply) = [2] pi(var) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(var(L),var(Lp)) -> eq#(L,Lp) p6: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p3: eq#(var(L),var(Lp)) -> eq#(L,Lp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p6: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = x1 + x2 + 2 var_A(x1) = x1 + 2 apply_A(x1,x2) = x1 + x2 + 2 lambda_A(x1,x2) = x1 + x2 + 2 precedence: eq# = cons = var = apply = lambda partial status: pi(eq#) = [] pi(cons) = [2] pi(var) = [] pi(apply) = [2] pi(lambda) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = x2 + 2 lambda_A(x1,x2) = x1 + 2 apply_A(x1,x2) = x1 + x2 + 2 var_A(x1) = x1 + 2 precedence: cons > lambda = apply > eq# > var partial status: pi(eq#) = [1] pi(cons) = [] pi(lambda) = [1] pi(apply) = [1] pi(var) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p4: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p4: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + x2 + 2 cons_A(x1,x2) = x2 + 1 var_A(x1) = x1 + 1 apply_A(x1,x2) = x1 + x2 + 1 lambda_A(x1,x2) = x1 + x2 + 3 precedence: lambda > var > apply > eq# = cons partial status: pi(eq#) = [2] pi(cons) = [2] pi(var) = [1] pi(apply) = [1, 2] pi(lambda) = [1, 2] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p3: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 cons_A(x1,x2) = x2 + 1 apply_A(x1,x2) = x1 + x2 + 1 var_A(x1) = x1 + 1 precedence: eq# = cons = apply = var partial status: pi(eq#) = [1] pi(cons) = [2] pi(apply) = [1, 2] pi(var) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + 1 apply_A(x1,x2) = x1 + x2 + 2 var_A(x1) = x1 + 2 precedence: eq# = apply = var partial status: pi(eq#) = [1] pi(apply) = [1, 2] pi(var) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: eq#_A(x1,x2) = x1 + x2 + 2 apply_A(x1,x2) = x1 + x2 + 1 precedence: eq# = apply partial status: pi(eq#) = [] pi(apply) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.