YES We show the termination of the TRS R: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) din(der(times(X,Y))) -> u31(din(der(X)),X,Y) u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) din(der(der(X))) -> u41(din(der(X)),X) u41(dout(DX),X) -> u42(din(der(DX)),X,DX) u42(dout(DDX),X,DX) -> dout(DDX) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: u21#(dout(DX),X,Y) -> u22#(din(der(Y)),X,Y,DX) p4: u21#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: u31#(dout(DX),X,Y) -> u32#(din(der(Y)),X,Y,DX) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(der(X))) -> u41#(din(der(X)),X) p10: din#(der(der(X))) -> din#(der(X)) p11: u41#(dout(DX),X) -> u42#(din(der(DX)),X,DX) p12: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p8, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = 3 der_A(x1) = 1 plus_A(x1,x2) = 5 u21#_A(x1,x2,x3) = x1 + 1 din_A(x1) = x1 dout_A(x1) = 3 u41#_A(x1,x2) = 3 times_A(x1,x2) = x1 + 4 u31#_A(x1,x2,x3) = 3 u22_A(x1,x2,x3,x4) = x1 + 1 u32_A(x1,x2,x3,x4) = x1 u42_A(x1,x2,x3) = 3 u21_A(x1,x2,x3) = x1 u31_A(x1,x2,x3) = 1 u41_A(x1,x2) = x1 precedence: plus > times > din# = der = u21# = din = u41# = u31# = u22 = u21 > u32 = u31 > dout = u42 = u41 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(u21#) = [] pi(din) = [] pi(dout) = [] pi(u41#) = [] pi(times) = [] pi(u31#) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(der(X))) -> din#(der(X)) p3: din#(der(der(X))) -> u41#(din(der(X)),X) p4: u41#(dout(DX),X) -> din#(der(DX)) p5: din#(der(times(X,Y))) -> din#(der(X)) p6: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p7: u31#(dout(DX),X,Y) -> din#(der(Y)) p8: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p4: u31#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> din#(der(X)) p6: din#(der(der(X))) -> u41#(din(der(X)),X) p7: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = 3 der_A(x1) = 0 plus_A(x1,x2) = 0 times_A(x1,x2) = 0 u31#_A(x1,x2,x3) = 3 din_A(x1) = 1 dout_A(x1) = 4 u41#_A(x1,x2) = x1 + 1 u22_A(x1,x2,x3,x4) = x1 + 1 u32_A(x1,x2,x3,x4) = x1 + 1 u42_A(x1,x2,x3) = x1 + 1 u21_A(x1,x2,x3) = x1 u31_A(x1,x2,x3) = x1 u41_A(x1,x2) = x1 precedence: plus = times > din# = der = u31# > din = u21 > u41# > u31 > u32 > u42 = u41 > dout = u22 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(times) = [] pi(u31#) = [] pi(din) = [] pi(dout) = [] pi(u41#) = [1] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p4: u31#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> din#(der(X)) p6: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p4: u31#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = x1 der_A(x1) = x1 times_A(x1,x2) = x1 + x2 + 5 u31#_A(x1,x2,x3) = x2 + x3 + 1 din_A(x1) = 4 dout_A(x1) = 1 plus_A(x1,x2) = x1 + 5 u22_A(x1,x2,x3,x4) = 2 u32_A(x1,x2,x3,x4) = 2 u42_A(x1,x2,x3) = x1 u21_A(x1,x2,x3) = 3 u31_A(x1,x2,x3) = 3 u41_A(x1,x2) = 4 precedence: times > din > plus > u31# > der = u22 = u32 = u42 = u21 = u31 = u41 > dout > din# partial status: pi(din#) = [1] pi(der) = [1] pi(times) = [1, 2] pi(u31#) = [2] pi(din) = [] pi(dout) = [] pi(plus) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: u31#(dout(DX),X,Y) -> din#(der(Y)) p4: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = x1 der_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 2 times_A(x1,x2) = x1 + x2 + 2 precedence: plus > der = times > din# partial status: pi(din#) = [1] pi(der) = [1] pi(plus) = [] pi(times) = [1, 2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = x1 der_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 2 precedence: plus > din# = der partial status: pi(din#) = [1] pi(der) = [1] pi(plus) = [1, 2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: din#_A(x1) = x1 der_A(x1) = x1 + 1 precedence: din# = der partial status: pi(din#) = [1] pi(der) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.