YES We show the termination of the TRS R: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) f(true(),x,y,z) -> del(.(y,z)) f(false(),x,y,z) -> .(x,del(.(y,z))) =(nil(),nil()) -> true() =(.(x,y),nil()) -> false() =(nil(),.(y,z)) -> false() =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: del#(.(x,.(y,z))) -> =#(x,y) p3: f#(true(),x,y,z) -> del#(.(y,z)) p4: f#(false(),x,y,z) -> del#(.(y,z)) p5: =#(.(x,y),.(u(),v())) -> =#(x,u()) p6: =#(.(x,y),.(u(),v())) -> =#(y,v()) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: f#(false(),x,y,z) -> del#(.(y,z)) p3: f#(true(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The set of usable rules consists of r4, r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: del#_A(x1) = x1 + 1 ._A(x1,x2) = x2 + 6 f#_A(x1,x2,x3,x4) = x1 + x4 + 7 =_A(x1,x2) = 4 false_A() = 1 true_A() = 3 nil_A() = 2 u_A() = 3 v_A() = 7 and_A(x1,x2) = x2 precedence: del# > . = f# = = = false = true = nil = v = and > u partial status: pi(del#) = [1] pi(.) = [2] pi(f#) = [] pi(=) = [] pi(false) = [] pi(true) = [] pi(nil) = [] pi(u) = [] pi(v) = [] pi(and) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: f#(false(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: f#(false(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The set of usable rules consists of r4, r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: del#_A(x1) = x1 ._A(x1,x2) = x2 + 4 f#_A(x1,x2,x3,x4) = x4 + 5 =_A(x1,x2) = x1 + 3 false_A() = 3 nil_A() = 1 true_A() = 0 u_A() = 2 v_A() = 5 and_A(x1,x2) = x2 + 3 precedence: = = and > del# = . = f# = false = nil = true = u = v partial status: pi(del#) = [1] pi(.) = [2] pi(f#) = [4] pi(=) = [] pi(false) = [] pi(nil) = [] pi(true) = [] pi(u) = [] pi(v) = [] pi(and) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(false(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The estimated dependency graph contains the following SCCs: (no SCCs)