YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(X) p5: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: sel#_A(x1,x2) = x1 + 3 s_A(x1) = x1 + 4 cons_A(x1,x2) = 2 activate_A(x1) = x1 + 8 from_A(x1) = 3 n__from_A(x1) = 1 first_A(x1,x2) = 3 |0|_A() = 1 nil_A() = 2 n__first_A(x1,x2) = 1 precedence: |0| > activate = from = first > n__from > sel# = s = cons = nil > n__first partial status: pi(sel#) = [] pi(s) = [] pi(cons) = [] pi(activate) = [1] pi(from) = [] pi(n__from) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: first#_A(x1,x2) = x2 s_A(x1) = x1 cons_A(x1,x2) = x2 + 2 activate#_A(x1) = x1 + 1 n__first_A(x1,x2) = x2 + 1 precedence: n__first > first# = s = activate# > cons partial status: pi(first#) = [2] pi(s) = [1] pi(cons) = [2] pi(activate#) = [1] pi(n__first) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)