YES We show the termination of the TRS R: fst(|0|(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(n__s(X))) add(|0|(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> |0|() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: fst#(s(X),cons(Y,Z)) -> activate#(Z) p3: add#(s(X),Y) -> s#(n__add(activate(X),Y)) p4: add#(s(X),Y) -> activate#(X) p5: len#(cons(X,Z)) -> s#(n__len(activate(Z))) p6: len#(cons(X,Z)) -> activate#(Z) p7: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p8: activate#(n__fst(X1,X2)) -> activate#(X1) p9: activate#(n__fst(X1,X2)) -> activate#(X2) p10: activate#(n__from(X)) -> from#(activate(X)) p11: activate#(n__from(X)) -> activate#(X) p12: activate#(n__s(X)) -> s#(X) p13: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p14: activate#(n__add(X1,X2)) -> activate#(X1) p15: activate#(n__add(X1,X2)) -> activate#(X2) p16: activate#(n__len(X)) -> len#(activate(X)) p17: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p6, p7, p8, p9, p11, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: activate#(n__len(X)) -> activate#(X) p3: activate#(n__len(X)) -> len#(activate(X)) p4: len#(cons(X,Z)) -> activate#(Z) p5: activate#(n__add(X1,X2)) -> activate#(X2) p6: activate#(n__add(X1,X2)) -> activate#(X1) p7: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p8: add#(s(X),Y) -> activate#(X) p9: activate#(n__from(X)) -> activate#(X) p10: activate#(n__fst(X1,X2)) -> activate#(X2) p11: activate#(n__fst(X1,X2)) -> activate#(X1) p12: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p13: fst#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: fst#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 cons_A(x1,x2) = x2 activate#_A(x1) = x1 n__len_A(x1) = x1 + 2 len#_A(x1) = x1 + 1 activate_A(x1) = x1 n__add_A(x1,x2) = x1 + x2 + 2 add#_A(x1,x2) = x1 + x2 + 1 n__from_A(x1) = x1 + 1 n__fst_A(x1,x2) = x1 + x2 + 2 fst_A(x1,x2) = x1 + x2 + 2 |0|_A() = 0 nil_A() = 1 from_A(x1) = x1 + 1 n__s_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 2 len_A(x1) = x1 + 2 precedence: fst# = activate# = n__len = len# = activate = n__add = add# = from = add = len > s = cons = n__from = n__fst = fst = |0| = nil = n__s partial status: pi(fst#) = [] pi(s) = [] pi(cons) = [] pi(activate#) = [] pi(n__len) = [] pi(len#) = [] pi(activate) = [] pi(n__add) = [] pi(add#) = [] pi(n__from) = [] pi(n__fst) = [] pi(fst) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] pi(n__s) = [] pi(add) = [] pi(len) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: activate#(n__len(X)) -> activate#(X) p3: len#(cons(X,Z)) -> activate#(Z) p4: activate#(n__add(X1,X2)) -> activate#(X2) p5: activate#(n__add(X1,X2)) -> activate#(X1) p6: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p7: add#(s(X),Y) -> activate#(X) p8: activate#(n__from(X)) -> activate#(X) p9: activate#(n__fst(X1,X2)) -> activate#(X2) p10: activate#(n__fst(X1,X2)) -> activate#(X1) p11: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p12: fst#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p3: fst#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__fst(X1,X2)) -> activate#(X1) p5: activate#(n__fst(X1,X2)) -> activate#(X2) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p8: add#(s(X),Y) -> activate#(X) p9: activate#(n__add(X1,X2)) -> activate#(X1) p10: activate#(n__add(X1,X2)) -> activate#(X2) p11: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: fst#_A(x1,x2) = x1 + x2 s_A(x1) = x1 cons_A(x1,x2) = x2 activate#_A(x1) = x1 n__fst_A(x1,x2) = x1 + x2 + 2 activate_A(x1) = x1 n__from_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 2 add#_A(x1,x2) = x1 + 1 n__len_A(x1) = x1 + 1 fst_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 nil_A() = 2 from_A(x1) = x1 + 1 n__s_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 2 len_A(x1) = x1 + 1 precedence: n__len = len > n__fst = activate = n__from = n__add = fst = |0| = from = add > cons > s = activate# = add# = n__s > fst# = nil partial status: pi(fst#) = [1, 2] pi(s) = [] pi(cons) = [] pi(activate#) = [] pi(n__fst) = [2] pi(activate) = [1] pi(n__from) = [1] pi(n__add) = [] pi(add#) = [] pi(n__len) = [] pi(fst) = [2] pi(|0|) = [] pi(nil) = [] pi(from) = [1] pi(n__s) = [] pi(add) = [2] pi(len) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: fst#(s(X),cons(Y,Z)) -> activate#(Z) p3: activate#(n__fst(X1,X2)) -> activate#(X1) p4: activate#(n__fst(X1,X2)) -> activate#(X2) p5: activate#(n__from(X)) -> activate#(X) p6: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p7: add#(s(X),Y) -> activate#(X) p8: activate#(n__add(X1,X2)) -> activate#(X1) p9: activate#(n__add(X1,X2)) -> activate#(X2) p10: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__fst(X1,X2)) -> activate#(X1) p2: activate#(n__len(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X2) p4: activate#(n__add(X1,X2)) -> activate#(X1) p5: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p6: add#(s(X),Y) -> activate#(X) p7: activate#(n__from(X)) -> activate#(X) p8: activate#(n__fst(X1,X2)) -> activate#(X2) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__fst_A(x1,x2) = x1 + x2 + 2 n__len_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 2 add#_A(x1,x2) = x1 + 1 activate_A(x1) = x1 s_A(x1) = x1 n__from_A(x1) = x1 + 1 fst_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 nil_A() = 2 cons_A(x1,x2) = x2 from_A(x1) = x1 + 1 n__s_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 2 len_A(x1) = x1 + 1 precedence: activate# = add# = activate = n__from = |0| = from = add = len > fst > n__fst = nil > n__len = n__add = s = cons = n__s partial status: pi(activate#) = [1] pi(n__fst) = [2] pi(n__len) = [1] pi(n__add) = [] pi(add#) = [1] pi(activate) = [1] pi(s) = [1] pi(n__from) = [1] pi(fst) = [] pi(|0|) = [] pi(nil) = [] pi(cons) = [] pi(from) = [1] pi(n__s) = [1] pi(add) = [1] pi(len) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__fst(X1,X2)) -> activate#(X1) p2: activate#(n__len(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X2) p4: activate#(n__add(X1,X2)) -> activate#(X1) p5: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__fst(X1,X2)) -> activate#(X2) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__fst(X1,X2)) -> activate#(X1) p2: activate#(n__fst(X1,X2)) -> activate#(X2) p3: activate#(n__from(X)) -> activate#(X) p4: activate#(n__add(X1,X2)) -> activate#(X1) p5: activate#(n__add(X1,X2)) -> activate#(X2) p6: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__fst_A(x1,x2) = x1 + x2 + 1 n__from_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 1 n__len_A(x1) = x1 + 1 precedence: activate# = n__fst = n__from = n__add = n__len partial status: pi(activate#) = [1] pi(n__fst) = [1, 2] pi(n__from) = [1] pi(n__add) = [1, 2] pi(n__len) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__fst(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X1) p4: activate#(n__add(X1,X2)) -> activate#(X2) p5: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__fst(X1,X2)) -> activate#(X2) p2: activate#(n__len(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X2) p4: activate#(n__add(X1,X2)) -> activate#(X1) p5: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__fst_A(x1,x2) = x1 + x2 + 1 n__len_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 1 n__from_A(x1) = x1 + 1 precedence: activate# = n__fst = n__len = n__add = n__from partial status: pi(activate#) = [1] pi(n__fst) = [2] pi(n__len) = [1] pi(n__add) = [1, 2] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__len(X)) -> activate#(X) p2: activate#(n__add(X1,X2)) -> activate#(X2) p3: activate#(n__add(X1,X2)) -> activate#(X1) p4: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__len(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X1) p4: activate#(n__add(X1,X2)) -> activate#(X2) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__len_A(x1) = x1 + 1 n__from_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 1 precedence: activate# = n__len = n__from = n__add partial status: pi(activate#) = [1] pi(n__len) = [1] pi(n__from) = [1] pi(n__add) = [1, 2] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__len(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__add(X1,X2)) -> activate#(X1) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__len(X)) -> activate#(X) p2: activate#(n__add(X1,X2)) -> activate#(X1) p3: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__len_A(x1) = x1 + 1 n__add_A(x1,x2) = x1 + x2 + 1 n__from_A(x1) = x1 + 1 precedence: activate# = n__len = n__add = n__from partial status: pi(activate#) = [1] pi(n__len) = [1] pi(n__add) = [1, 2] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__add(X1,X2)) -> activate#(X1) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__add(X1,X2)) -> activate#(X1) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__add_A(x1,x2) = x1 + x2 + 1 n__from_A(x1) = x1 + 1 precedence: n__add > n__from > activate# partial status: pi(activate#) = [1] pi(n__add) = [1, 2] pi(n__from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__from_A(x1) = x1 + 1 precedence: activate# = n__from partial status: pi(activate#) = [1] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.