YES We show the termination of the TRS R: a__fst(|0|(),Z) -> nil() a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__len(nil()) -> |0|() a__len(cons(X,Z)) -> s(len(Z)) mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(|0|()) -> |0|() mark(s(X)) -> s(X) mark(nil()) -> nil() mark(cons(X1,X2)) -> cons(mark(X1),X2) a__fst(X1,X2) -> fst(X1,X2) a__from(X) -> from(X) a__add(X1,X2) -> add(X1,X2) a__len(X) -> len(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(from(X)) -> a__from#(mark(X)) p8: mark#(from(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(len(X)) -> a__len#(mark(X)) p13: mark#(len(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> a__from#(mark(X)) p10: a__from#(X) -> mark#(X) p11: mark#(fst(X1,X2)) -> mark#(X2) p12: mark#(fst(X1,X2)) -> mark#(X1) p13: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__fst#_A(x1,x2) = x1 + x2 s_A(x1) = 3 cons_A(x1,x2) = x1 + 3 mark#_A(x1) = x1 + 2 len_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 4 a__add#_A(x1,x2) = x1 + x2 + 1 mark_A(x1) = x1 |0|_A() = 3 from_A(x1) = x1 + 4 a__from#_A(x1) = x1 + 3 fst_A(x1,x2) = x1 + x2 + 1 a__fst_A(x1,x2) = x1 + x2 + 1 nil_A() = 3 a__from_A(x1) = x1 + 4 a__add_A(x1,x2) = x1 + x2 + 4 a__len_A(x1) = x1 precedence: a__from# > s = cons = mark = fst = a__fst = nil = a__from = a__len > a__add# > a__fst# = mark# = from > len > add = a__add > |0| partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [] pi(len) = [] pi(add) = [] pi(a__add#) = [1] pi(mark) = [] pi(|0|) = [] pi(from) = [] pi(a__from#) = [] pi(fst) = [] pi(a__fst) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [1, 2] pi(a__len) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: a__add#(|0|(),X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> a__from#(mark(X)) p9: a__from#(X) -> mark#(X) p10: mark#(fst(X1,X2)) -> mark#(X2) p11: mark#(fst(X1,X2)) -> mark#(X1) p12: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(from(X)) -> mark#(X) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(len(X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__fst#_A(x1,x2) = x2 s_A(x1) = 1 cons_A(x1,x2) = x1 + 3 mark#_A(x1) = x1 + 2 fst_A(x1,x2) = x1 + x2 mark_A(x1) = x1 from_A(x1) = x1 + 4 a__from#_A(x1) = x1 + 3 add_A(x1,x2) = x1 + x2 + 3 len_A(x1) = x1 + 4 a__fst_A(x1,x2) = x1 + x2 |0|_A() = 2 nil_A() = 1 a__from_A(x1) = x1 + 4 a__add_A(x1,x2) = x1 + x2 + 3 a__len_A(x1) = x1 + 4 precedence: a__fst# = fst = mark = a__from# = a__fst = |0| > cons = mark# = nil = a__from > from = add = len = a__add = a__len > s partial status: pi(a__fst#) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(fst) = [] pi(mark) = [] pi(from) = [] pi(a__from#) = [] pi(add) = [] pi(len) = [] pi(a__fst) = [] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] pi(a__add) = [] pi(a__len) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p2: mark#(fst(X1,X2)) -> mark#(X1) p3: mark#(fst(X1,X2)) -> mark#(X2) p4: mark#(from(X)) -> a__from#(mark(X)) p5: a__from#(X) -> mark#(X) p6: mark#(from(X)) -> mark#(X) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(add(X1,X2)) -> mark#(X2) p9: mark#(len(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> a__from#(mark(X)) p8: a__from#(X) -> mark#(X) p9: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 fst_A(x1,x2) = x1 + x2 + 1 cons_A(x1,x2) = x1 + 2 len_A(x1) = x1 + 3 add_A(x1,x2) = x1 + x2 + 3 from_A(x1) = x1 + 3 a__from#_A(x1) = x1 + 1 mark_A(x1) = x1 a__fst_A(x1,x2) = x1 + x2 + 1 |0|_A() = 2 nil_A() = 1 s_A(x1) = 2 a__from_A(x1) = x1 + 3 a__add_A(x1,x2) = x1 + x2 + 3 a__len_A(x1) = x1 + 3 precedence: from = mark = a__from > a__len > |0| > nil > add = a__add > fst = len = a__fst = s > mark# > cons = a__from# partial status: pi(mark#) = [1] pi(fst) = [1, 2] pi(cons) = [1] pi(len) = [1] pi(add) = [] pi(from) = [1] pi(a__from#) = [] pi(mark) = [1] pi(a__fst) = [1, 2] pi(|0|) = [] pi(nil) = [] pi(s) = [] pi(a__from) = [1] pi(a__add) = [] pi(a__len) = [1] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> a__from#(mark(X)) p8: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(from(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X2) p6: mark#(len(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 fst_A(x1,x2) = x1 + x2 + 1 from_A(x1) = x1 + 1 add_A(x1,x2) = x1 + x2 + 1 len_A(x1) = x1 + 1 cons_A(x1,x2) = x1 + x2 + 1 precedence: fst > mark# = from = add = len = cons partial status: pi(mark#) = [1] pi(fst) = [1, 2] pi(from) = [1] pi(add) = [1, 2] pi(len) = [1] pi(cons) = [1, 2] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(from(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X2) p6: mark#(len(X)) -> mark#(X) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(len(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(from(X)) -> mark#(X) p6: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 fst_A(x1,x2) = x1 + x2 + 1 len_A(x1) = x1 + 1 add_A(x1,x2) = x1 + x2 + 1 from_A(x1) = x1 + 1 precedence: mark# = fst = len = add = from partial status: pi(mark#) = [1] pi(fst) = [1, 2] pi(len) = [1] pi(add) = [1, 2] pi(from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> mark#(X) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(from(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 len_A(x1) = x1 + 1 fst_A(x1,x2) = x1 + x2 + 1 from_A(x1) = x1 + 1 add_A(x1,x2) = x1 + x2 + 1 precedence: len > mark# = fst > from > add partial status: pi(mark#) = [] pi(len) = [1] pi(fst) = [2] pi(from) = [1] pi(add) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(from(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 fst_A(x1,x2) = x1 + x2 + 1 add_A(x1,x2) = x1 + x2 + 1 from_A(x1) = x1 + 1 precedence: mark# = fst = add = from partial status: pi(mark#) = [] pi(fst) = [2] pi(add) = [2] pi(from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(from(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 1 from_A(x1) = x1 + 1 precedence: mark# = add = from partial status: pi(mark#) = [] pi(add) = [2] pi(from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 from_A(x1) = x1 + 1 add_A(x1,x2) = x1 + x2 + 1 precedence: mark# > from = add partial status: pi(mark#) = [] pi(from) = [1] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 1 precedence: mark# = add partial status: pi(mark#) = [] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.