YES We show the termination of the TRS R: active(c()) -> mark(f(g(c()))) active(f(g(X))) -> mark(g(X)) mark(c()) -> active(c()) mark(f(X)) -> active(f(X)) mark(g(X)) -> active(g(X)) f(mark(X)) -> f(X) f(active(X)) -> f(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: active#(c()) -> f#(g(c())) p3: active#(c()) -> g#(c()) p4: active#(f(g(X))) -> mark#(g(X)) p5: mark#(c()) -> active#(c()) p6: mark#(f(X)) -> active#(f(X)) p7: mark#(g(X)) -> active#(g(X)) p8: f#(mark(X)) -> f#(X) p9: f#(active(X)) -> f#(X) p10: g#(mark(X)) -> g#(X) p11: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p6, p7} {p8, p9} {p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: mark#(f(X)) -> active#(f(X)) p3: active#(f(g(X))) -> mark#(g(X)) p4: mark#(g(X)) -> active#(g(X)) p5: mark#(c()) -> active#(c()) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: active#_A(x1) = x1 c_A() = 5 mark#_A(x1) = x1 + 1 f_A(x1) = x1 + 2 g_A(x1) = 1 mark_A(x1) = x1 + 3 active_A(x1) = x1 + 3 precedence: active# = c = mark# = f = g = mark = active partial status: pi(active#) = [1] pi(c) = [] pi(mark#) = [1] pi(f) = [1] pi(g) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: mark#(f(X)) -> active#(f(X)) p3: active#(f(g(X))) -> mark#(g(X)) p4: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: mark#(f(X)) -> active#(f(X)) p3: active#(f(g(X))) -> mark#(g(X)) p4: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: active#_A(x1) = x1 c_A() = 3 mark#_A(x1) = 2 f_A(x1) = 2 g_A(x1) = 1 mark_A(x1) = x1 active_A(x1) = x1 + 3 precedence: c = g = mark > active# = mark# = active > f partial status: pi(active#) = [] pi(c) = [] pi(mark#) = [] pi(f) = [] pi(g) = [] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(X)) p2: active#(f(g(X))) -> mark#(g(X)) p3: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(X)) p2: active#(f(g(X))) -> mark#(g(X)) p3: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 + 1 f_A(x1) = x1 + 2 active#_A(x1) = x1 g_A(x1) = x1 + 1 mark_A(x1) = x1 + 3 active_A(x1) = x1 + 3 precedence: mark# = f = active# = g = mark = active partial status: pi(mark#) = [1] pi(f) = [1] pi(active#) = [] pi(g) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(g(X))) -> mark#(g(X)) p2: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(g(X))) -> mark#(g(X)) p2: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: active#_A(x1) = x1 f_A(x1) = x1 + 2 g_A(x1) = 1 mark#_A(x1) = x1 + 1 mark_A(x1) = 2 active_A(x1) = 2 precedence: active > f > g > active# > mark# > mark partial status: pi(active#) = [] pi(f) = [1] pi(g) = [] pi(mark#) = [1] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: f#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: f# = mark = active partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: f#_A(x1) = x1 active_A(x1) = x1 + 1 precedence: f# = active partial status: pi(f#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: g#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: g# = mark = active partial status: pi(g#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: g#_A(x1) = x1 active_A(x1) = x1 + 1 precedence: g# = active partial status: pi(g#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.