YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) head(cons(X,XS)) -> X |2nd|(cons(X,XS)) -> head(activate(XS)) take(|0|(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) sel(|0|(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) from(X) -> n__from(X) s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,XS)) -> head#(activate(XS)) p2: |2nd|#(cons(X,XS)) -> activate#(XS) p3: take#(s(N),cons(X,XS)) -> activate#(XS) p4: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) p5: sel#(s(N),cons(X,XS)) -> activate#(XS) p6: activate#(n__from(X)) -> from#(activate(X)) p7: activate#(n__from(X)) -> activate#(X) p8: activate#(n__s(X)) -> s#(activate(X)) p9: activate#(n__s(X)) -> activate#(X) p10: activate#(n__take(X1,X2)) -> take#(activate(X1),activate(X2)) p11: activate#(n__take(X1,X2)) -> activate#(X1) p12: activate#(n__take(X1,X2)) -> activate#(X2) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p3, p7, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of r1, r4, r5, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: sel#_A(x1,x2) = x1 + 4 s_A(x1) = x1 + 5 cons_A(x1,x2) = 3 activate_A(x1) = x1 + 2 from_A(x1) = 6 n__from_A(x1) = 5 n__s_A(x1) = x1 + 5 take_A(x1,x2) = x1 + 4 |0|_A() = 2 nil_A() = 1 n__take_A(x1,x2) = x1 + 4 precedence: sel# = s = cons = activate = from = n__from = n__s = take = |0| = nil = n__take partial status: pi(sel#) = [1] pi(s) = [] pi(cons) = [] pi(activate) = [1] pi(from) = [] pi(n__from) = [] pi(n__s) = [] pi(take) = [1] pi(|0|) = [] pi(nil) = [] pi(n__take) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(s(N),cons(X,XS)) -> activate#(XS) p2: activate#(n__take(X1,X2)) -> activate#(X2) p3: activate#(n__take(X1,X2)) -> activate#(X1) p4: activate#(n__take(X1,X2)) -> take#(activate(X1),activate(X2)) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of r1, r4, r5, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: take#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 cons_A(x1,x2) = x2 activate#_A(x1) = x1 n__take_A(x1,x2) = x1 + x2 + 2 activate_A(x1) = x1 n__s_A(x1) = x1 n__from_A(x1) = x1 + 1 from_A(x1) = x1 + 1 take_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 nil_A() = 2 precedence: take# = activate > activate# > s = n__take = n__s = n__from = from = take = |0| = nil > cons partial status: pi(take#) = [2] pi(s) = [1] pi(cons) = [2] pi(activate#) = [1] pi(n__take) = [] pi(activate) = [1] pi(n__s) = [1] pi(n__from) = [] pi(from) = [1] pi(take) = [2] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__take(X1,X2)) -> activate#(X1) p3: activate#(n__take(X1,X2)) -> take#(activate(X1),activate(X2)) p4: activate#(n__s(X)) -> activate#(X) p5: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__take(X1,X2)) -> activate#(X1) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__take_A(x1,x2) = x1 + x2 + 2 n__from_A(x1) = x1 + 2 n__s_A(x1) = x1 + 2 precedence: n__take > activate# > n__s > n__from partial status: pi(activate#) = [1] pi(n__take) = [1, 2] pi(n__from) = [] pi(n__s) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__s(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__take(X1,X2)) -> activate#(X2) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__take_A(x1,x2) = x1 + x2 + 1 n__s_A(x1) = x1 + 1 n__from_A(x1) = x1 + 1 precedence: activate# = n__take = n__s = n__from partial status: pi(activate#) = [1] pi(n__take) = [2] pi(n__s) = [1] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + 1 n__from_A(x1) = x1 + 1 precedence: activate# = n__s = n__from partial status: pi(activate#) = [1] pi(n__s) = [1] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: s(X) -> n__s(X) r10: take(X1,X2) -> n__take(X1,X2) r11: activate(n__from(X)) -> from(activate(X)) r12: activate(n__s(X)) -> s(activate(X)) r13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__from_A(x1) = x1 + 1 precedence: activate# = n__from partial status: pi(activate#) = [1] pi(n__from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.