YES We show the termination of the TRS R: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) sel(|0|(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) fib1(X1,X2) -> n__fib1(X1,X2) activate(n__fib1(X1,X2)) -> fib1(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fib#(N) -> sel#(N,fib1(s(|0|()),s(|0|()))) p2: fib#(N) -> fib1#(s(|0|()),s(|0|())) p3: fib1#(X,Y) -> add#(X,Y) p4: add#(s(X),Y) -> add#(X,Y) p5: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) p6: sel#(s(N),cons(X,XS)) -> activate#(XS) p7: activate#(n__fib1(X1,X2)) -> fib1#(X1,X2) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: activate(n__fib1(X1,X2)) -> fib1(X1,X2) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p5} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: activate(n__fib1(X1,X2)) -> fib1(X1,X2) r9: activate(X) -> X The set of usable rules consists of r2, r3, r4, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: sel#_A(x1,x2) = x1 + 2 s_A(x1) = x1 + 3 cons_A(x1,x2) = 0 activate_A(x1) = x1 + 4 add_A(x1,x2) = x1 + x2 + 4 |0|_A() = 1 fib1_A(x1,x2) = x2 + 2 n__fib1_A(x1,x2) = x2 + 1 precedence: sel# = s = activate = add = |0| = fib1 = n__fib1 > cons partial status: pi(sel#) = [1] pi(s) = [] pi(cons) = [] pi(activate) = [1] pi(add) = [] pi(|0|) = [] pi(fib1) = [2] pi(n__fib1) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: activate(n__fib1(X1,X2)) -> fib1(X1,X2) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: add#_A(x1,x2) = x1 s_A(x1) = x1 + 1 precedence: add# = s partial status: pi(add#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.