YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() isList(V) -> U11(isNeList(activate(V))) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: U21#(tt(),V2) -> U22#(isList(activate(V2))) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: U21#(tt(),V2) -> activate#(V2) p6: U41#(tt(),V2) -> U42#(isNeList(activate(V2))) p7: U41#(tt(),V2) -> isNeList#(activate(V2)) p8: U41#(tt(),V2) -> activate#(V2) p9: U51#(tt(),V2) -> U52#(isList(activate(V2))) p10: U51#(tt(),V2) -> isList#(activate(V2)) p11: U51#(tt(),V2) -> activate#(V2) p12: U71#(tt(),P) -> U72#(isPal(activate(P))) p13: U71#(tt(),P) -> isPal#(activate(P)) p14: U71#(tt(),P) -> activate#(P) p15: isList#(V) -> U11#(isNeList(activate(V))) p16: isList#(V) -> isNeList#(activate(V)) p17: isList#(V) -> activate#(V) p18: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p19: isList#(n____(V1,V2)) -> isList#(activate(V1)) p20: isList#(n____(V1,V2)) -> activate#(V1) p21: isList#(n____(V1,V2)) -> activate#(V2) p22: isNeList#(V) -> U31#(isQid(activate(V))) p23: isNeList#(V) -> isQid#(activate(V)) p24: isNeList#(V) -> activate#(V) p25: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p26: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p27: isNeList#(n____(V1,V2)) -> activate#(V1) p28: isNeList#(n____(V1,V2)) -> activate#(V2) p29: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p30: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p31: isNeList#(n____(V1,V2)) -> activate#(V1) p32: isNeList#(n____(V1,V2)) -> activate#(V2) p33: isNePal#(V) -> U61#(isQid(activate(V))) p34: isNePal#(V) -> isQid#(activate(V)) p35: isNePal#(V) -> activate#(V) p36: isNePal#(n____(I,n____(P,I))) -> U71#(isQid(activate(I)),activate(P)) p37: isNePal#(n____(I,n____(P,I))) -> isQid#(activate(I)) p38: isNePal#(n____(I,n____(P,I))) -> activate#(I) p39: isNePal#(n____(I,n____(P,I))) -> activate#(P) p40: isPal#(V) -> U81#(isNePal(activate(V))) p41: isPal#(V) -> isNePal#(activate(V)) p42: isPal#(V) -> activate#(V) p43: activate#(n__nil()) -> nil#() p44: activate#(n____(X1,X2)) -> __#(activate(X1),activate(X2)) p45: activate#(n____(X1,X2)) -> activate#(X1) p46: activate#(n____(X1,X2)) -> activate#(X2) p47: activate#(n__a()) -> a#() p48: activate#(n__e()) -> e#() p49: activate#(n__i()) -> i#() p50: activate#(n__o()) -> o#() p51: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p13, p36, p41} {p4, p7, p10, p16, p18, p19, p25, p26, p29, p30} {p45, p46} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> isNePal#(activate(V)) p2: isNePal#(n____(I,n____(P,I))) -> U71#(isQid(activate(I)),activate(P)) p3: U71#(tt(),P) -> isPal#(activate(P)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isPal#_A(x1) = x1 + 3 isNePal#_A(x1) = x1 + 1 activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 2 U71#_A(x1,x2) = x2 + 4 isQid_A(x1) = 4 tt_A() = 2 ___A(x1,x2) = x1 + x2 + 2 nil_A() = 1 n__nil_A() = 1 a_A() = 3 n__a_A() = 3 e_A() = 3 n__e_A() = 3 i_A() = 3 n__i_A() = 3 o_A() = 1 n__o_A() = 1 u_A() = 1 n__u_A() = 1 precedence: tt > i = n__i > nil = n__nil = o = n__o > activate = e = n__e > n____ = __ > a = n__a = u > n__u > U71# > isPal# > isNePal# = isQid partial status: pi(isPal#) = [] pi(isNePal#) = [1] pi(activate) = [1] pi(n____) = [1, 2] pi(U71#) = [2] pi(isQid) = [] pi(tt) = [] pi(__) = [1, 2] pi(nil) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> isNePal#(activate(V)) p2: isNePal#(n____(I,n____(P,I))) -> U71#(isQid(activate(I)),activate(P)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U51#(isNeList(activate(V1)),activate(V2)) p2: U51#(tt(),V2) -> isList#(activate(V2)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p5: U21#(tt(),V2) -> isList#(activate(V2)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p10: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNeList#_A(x1) = x1 + 6 n_____A(x1,x2) = x1 + x2 U51#_A(x1,x2) = x1 + x2 isNeList_A(x1) = x1 + 2 activate_A(x1) = x1 tt_A() = 7 isList#_A(x1) = x1 + 6 U21#_A(x1,x2) = x1 + x2 + 1 isList_A(x1) = x1 + 4 U41#_A(x1,x2) = x1 + x2 + 1 U22_A(x1) = x1 + 2 U42_A(x1) = x1 U52_A(x1) = 7 ___A(x1,x2) = x1 + x2 nil_A() = 4 U11_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 U31_A(x1) = x1 + 1 U41_A(x1,x2) = x2 + 2 U51_A(x1,x2) = x1 + x2 isQid_A(x1) = x1 n__a_A() = 8 n__e_A() = 8 n__i_A() = 8 n__o_A() = 8 n__u_A() = 8 n__nil_A() = 4 a_A() = 8 e_A() = 8 i_A() = 8 o_A() = 8 u_A() = 8 precedence: isList > isNeList = U52 = U31 = U51 > isNeList# = U51# = isList# = U41# > n____ = U21# = __ > activate > tt = U22 = U42 = U21 = U41 > n__o = o > n__e = e = i > n__i > u > n__u > nil > n__nil > U11 = isQid = a > n__a partial status: pi(isNeList#) = [] pi(n____) = [] pi(U51#) = [2] pi(isNeList) = [1] pi(activate) = [1] pi(tt) = [] pi(isList#) = [] pi(U21#) = [2] pi(isList) = [] pi(U41#) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(__) = [] pi(nil) = [] pi(U11) = [1] pi(U21) = [2] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(tt(),V2) -> isList#(activate(V2)) p2: isList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p9: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isList#(V) -> isNeList#(activate(V)) p3: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p4: U41#(tt(),V2) -> isNeList#(activate(V2)) p5: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p6: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p7: U21#(tt(),V2) -> isList#(activate(V2)) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isList#_A(x1) = x1 + 2 n_____A(x1,x2) = x1 + x2 + 4 activate_A(x1) = x1 isNeList#_A(x1) = x1 + 1 U41#_A(x1,x2) = x2 + 2 isList_A(x1) = 7 tt_A() = 0 U21#_A(x1,x2) = x2 + 3 U42_A(x1) = 0 U52_A(x1) = 1 U22_A(x1) = 1 U31_A(x1) = 1 U41_A(x1,x2) = 0 isNeList_A(x1) = 3 U51_A(x1,x2) = 2 isQid_A(x1) = x1 + 4 n__a_A() = 1 n__e_A() = 1 n__i_A() = 1 n__o_A() = 1 n__u_A() = 1 ___A(x1,x2) = x1 + x2 + 4 nil_A() = 1 U11_A(x1) = x1 + 1 U21_A(x1,x2) = 2 n__nil_A() = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 precedence: U52 = U41 = isNeList > activate > U31 = U51 > isList > n____ = U21# = U42 = U22 = isQid = __ = U11 > n__e = e > n__a = n__i = a = i > isList# = U21 > isNeList# = U41# = nil = n__nil > tt = n__o = n__u = o = u partial status: pi(isList#) = [1] pi(n____) = [1, 2] pi(activate) = [1] pi(isNeList#) = [] pi(U41#) = [] pi(isList) = [] pi(tt) = [] pi(U21#) = [2] pi(U42) = [] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [] pi(U51) = [] pi(isQid) = [1] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1, 2] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p3: U41#(tt(),V2) -> isNeList#(activate(V2)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p6: U21#(tt(),V2) -> isList#(activate(V2)) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p3: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p5: U21#(tt(),V2) -> isList#(activate(V2)) p6: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p7: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isList#_A(x1) = x1 + 1 isNeList#_A(x1) = x1 activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 11 U21#_A(x1,x2) = x1 + x2 + 1 isList_A(x1) = x1 + 7 tt_A() = 6 U41#_A(x1,x2) = x2 + 1 U42_A(x1) = x1 + 1 U52_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 U31_A(x1) = x1 + 1 U41_A(x1,x2) = x1 + x2 + 1 isNeList_A(x1) = x1 + 4 U51_A(x1,x2) = x2 + 9 isQid_A(x1) = x1 + 2 n__a_A() = 7 n__e_A() = 5 n__i_A() = 5 n__o_A() = 7 n__u_A() = 5 ___A(x1,x2) = x1 + x2 + 11 nil_A() = 1 U11_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 3 n__nil_A() = 1 a_A() = 7 e_A() = 5 i_A() = 5 o_A() = 7 u_A() = 5 precedence: isList# = isNeList# = activate = U41# = U42 = U22 > U21# > n____ = U52 = __ = U11 > tt = U31 = U41 = isQid = n__u = nil = u > U51 = U21 > isList = isNeList = n__i = i > n__e = e > n__nil > n__a = a > n__o = o partial status: pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [] pi(n____) = [1] pi(U21#) = [] pi(isList) = [1] pi(tt) = [] pi(U41#) = [] pi(U42) = [] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [1] pi(U51) = [] pi(isQid) = [1] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1] pi(nil) = [] pi(U11) = [] pi(U21) = [1, 2] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p4: U21#(tt(),V2) -> isList#(activate(V2)) p5: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p6: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p3: U41#(tt(),V2) -> isNeList#(activate(V2)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) p6: U21#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isList#_A(x1) = x1 + 5 isNeList#_A(x1) = x1 + 5 activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 U41#_A(x1,x2) = x1 + x2 isList_A(x1) = x1 + 3 tt_A() = 5 U21#_A(x1,x2) = x1 + x2 + 2 U42_A(x1) = x1 + 1 U52_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 U31_A(x1) = x1 + 1 U41_A(x1,x2) = x1 + x2 isNeList_A(x1) = x1 + 3 U51_A(x1,x2) = x1 + x2 isQid_A(x1) = x1 + 1 n__a_A() = 6 n__e_A() = 6 n__i_A() = 6 n__o_A() = 6 n__u_A() = 6 ___A(x1,x2) = x1 + x2 nil_A() = 3 U11_A(x1) = x1 U21_A(x1,x2) = x1 + x2 n__nil_A() = 3 a_A() = 6 e_A() = 6 i_A() = 6 o_A() = 6 u_A() = 6 precedence: isQid = nil = n__nil > isList = U11 = U21 > activate = U22 > U52 = U31 = isNeList = U51 > n__a = a > n__e = e > isList# = isNeList# = U41# = U21# > n____ = __ > n__o = i = o = u > U42 = U41 > tt = n__i = n__u partial status: pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [1] pi(n____) = [1] pi(U41#) = [] pi(isList) = [1] pi(tt) = [] pi(U21#) = [] pi(U42) = [] pi(U52) = [] pi(U22) = [1] pi(U31) = [] pi(U41) = [] pi(isNeList) = [] pi(U51) = [] pi(isQid) = [1] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p3: U41#(tt(),V2) -> isNeList#(activate(V2)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> U21#(isList(activate(V1)),activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(V) -> isNeList#(activate(V)) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p4: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isList#_A(x1) = x1 + 8 isNeList#_A(x1) = x1 + 7 activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 9 U41#_A(x1,x2) = x2 + 8 isList_A(x1) = x1 + 4 tt_A() = 6 U42_A(x1) = 7 U52_A(x1) = x1 + 1 U22_A(x1) = 7 U31_A(x1) = x1 + 1 U41_A(x1,x2) = 8 isNeList_A(x1) = x1 + 2 U51_A(x1,x2) = x2 + 6 isQid_A(x1) = x1 n__a_A() = 7 n__e_A() = 7 n__i_A() = 7 n__o_A() = 7 n__u_A() = 7 ___A(x1,x2) = x1 + x2 + 9 nil_A() = 7 U11_A(x1) = x1 + 1 U21_A(x1,x2) = x2 + 8 n__nil_A() = 7 a_A() = 7 e_A() = 7 i_A() = 7 o_A() = 7 u_A() = 7 precedence: U41# > U42 > isNeList > isNeList# > U51 = isQid > U52 > n____ = __ > U31 > isList# = U41 = n__o = o > activate = isList = n__i = nil = U11 = U21 = i > U22 > tt > n__a = n__e = n__u = n__nil = a = e = u partial status: pi(isList#) = [1] pi(isNeList#) = [1] pi(activate) = [1] pi(n____) = [] pi(U41#) = [2] pi(isList) = [1] pi(tt) = [] pi(U42) = [] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [1] pi(U51) = [2] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [2] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p3: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> U41#(isList(activate(V1)),activate(V2)) p2: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNeList#_A(x1) = x1 + 4 n_____A(x1,x2) = x1 + x2 + 6 U41#_A(x1,x2) = x2 + 5 isList_A(x1) = 10 activate_A(x1) = x1 tt_A() = 2 U42_A(x1) = 3 U52_A(x1) = 3 U22_A(x1) = 3 U31_A(x1) = 3 U41_A(x1,x2) = 4 isNeList_A(x1) = 8 U51_A(x1,x2) = 7 isQid_A(x1) = x1 + 9 n__a_A() = 3 n__e_A() = 3 n__i_A() = 1 n__o_A() = 3 n__u_A() = 3 ___A(x1,x2) = x1 + x2 + 6 nil_A() = 1 U11_A(x1) = x1 + 1 U21_A(x1,x2) = 7 n__nil_A() = 1 a_A() = 3 e_A() = 3 i_A() = 1 o_A() = 3 u_A() = 3 precedence: activate > U41# = isList > tt = U42 = U22 = U31 = U11 = U21 > isNeList# > isQid = n__o = nil = n__nil = o > __ > n____ > U52 = isNeList = U51 > U41 > n__a = a > n__u = u > n__e = n__i = e = i partial status: pi(isNeList#) = [1] pi(n____) = [2] pi(U41#) = [2] pi(isList) = [] pi(activate) = [1] pi(tt) = [] pi(U42) = [] pi(U52) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(isNeList) = [] pi(U51) = [] pi(isQid) = [1] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1, 2] pi(nil) = [] pi(U11) = [1] pi(U21) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U41#(tt(),V2) -> isNeList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X2) p2: activate#(n____(X1,X2)) -> activate#(X1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n_____A(x1,x2) = x1 + x2 + 2 precedence: activate# = n____ partial status: pi(activate#) = [] pi(n____) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 1 precedence: activate# = n____ partial status: pi(activate#) = [] pi(n____) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: __#_A(x1,x2) = x1 + 1 ___A(x1,x2) = x1 + x2 + 2 nil_A() = 1 n_____A(x1,x2) = x2 precedence: __# = __ = nil = n____ partial status: pi(__#) = [1] pi(__) = [1, 2] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt()) -> tt() r5: U21(tt(),V2) -> U22(isList(activate(V2))) r6: U22(tt()) -> tt() r7: U31(tt()) -> tt() r8: U41(tt(),V2) -> U42(isNeList(activate(V2))) r9: U42(tt()) -> tt() r10: U51(tt(),V2) -> U52(isList(activate(V2))) r11: U52(tt()) -> tt() r12: U61(tt()) -> tt() r13: U71(tt(),P) -> U72(isPal(activate(P))) r14: U72(tt()) -> tt() r15: U81(tt()) -> tt() r16: isList(V) -> U11(isNeList(activate(V))) r17: isList(n__nil()) -> tt() r18: isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) r19: isNeList(V) -> U31(isQid(activate(V))) r20: isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) r21: isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) r22: isNePal(V) -> U61(isQid(activate(V))) r23: isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) r24: isPal(V) -> U81(isNePal(activate(V))) r25: isPal(n__nil()) -> tt() r26: isQid(n__a()) -> tt() r27: isQid(n__e()) -> tt() r28: isQid(n__i()) -> tt() r29: isQid(n__o()) -> tt() r30: isQid(n__u()) -> tt() r31: nil() -> n__nil() r32: __(X1,X2) -> n____(X1,X2) r33: a() -> n__a() r34: e() -> n__e() r35: i() -> n__i() r36: o() -> n__o() r37: u() -> n__u() r38: activate(n__nil()) -> nil() r39: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r40: activate(n__a()) -> a() r41: activate(n__e()) -> e() r42: activate(n__i()) -> i() r43: activate(n__o()) -> o() r44: activate(n__u()) -> u() r45: activate(X) -> X The set of usable rules consists of r1, r2, r3, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: __#_A(x1,x2) = x1 ___A(x1,x2) = x1 + x2 + 1 nil_A() = 1 n_____A(x1,x2) = 0 precedence: __# = __ = nil = n____ partial status: pi(__#) = [1] pi(__) = [1, 2] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.