YES We show the termination of the TRS R: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) a__U12(tt(),V2) -> a__U13(a__isNat(V2)) a__U13(tt()) -> tt() a__U21(tt(),V1) -> a__U22(a__isNat(V1)) a__U22(tt()) -> tt() a__U31(tt(),N) -> mark(N) a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) a__isNatKind(|0|()) -> tt() a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) a__isNatKind(s(V1)) -> a__isNatKind(V1) a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) mark(U12(X1,X2)) -> a__U12(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(U13(X)) -> a__U13(mark(X)) mark(U21(X1,X2)) -> a__U21(mark(X1),X2) mark(U22(X)) -> a__U22(mark(X)) mark(U31(X1,X2)) -> a__U31(mark(X1),X2) mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNatKind(X)) -> a__isNatKind(X) mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(|0|()) -> |0|() a__U11(X1,X2,X3) -> U11(X1,X2,X3) a__U12(X1,X2) -> U12(X1,X2) a__isNat(X) -> isNat(X) a__U13(X) -> U13(X) a__U21(X1,X2) -> U21(X1,X2) a__U22(X) -> U22(X) a__U31(X1,X2) -> U31(X1,X2) a__U41(X1,X2,X3) -> U41(X1,X2,X3) a__plus(X1,X2) -> plus(X1,X2) a__and(X1,X2) -> and(X1,X2) a__isNatKind(X) -> isNatKind(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p3: a__U12#(tt(),V2) -> a__U13#(a__isNat(V2)) p4: a__U12#(tt(),V2) -> a__isNat#(V2) p5: a__U21#(tt(),V1) -> a__U22#(a__isNat(V1)) p6: a__U21#(tt(),V1) -> a__isNat#(V1) p7: a__U31#(tt(),N) -> mark#(N) p8: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p9: a__U41#(tt(),M,N) -> mark#(N) p10: a__U41#(tt(),M,N) -> mark#(M) p11: a__and#(tt(),X) -> mark#(X) p12: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p13: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__isNat#(s(V1)) -> a__isNatKind#(V1) p17: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p18: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p20: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p21: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p22: a__plus#(N,|0|()) -> a__isNat#(N) p23: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p24: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p25: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p26: a__plus#(N,s(M)) -> a__isNat#(M) p27: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p28: mark#(U11(X1,X2,X3)) -> mark#(X1) p29: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p30: mark#(U12(X1,X2)) -> mark#(X1) p31: mark#(isNat(X)) -> a__isNat#(X) p32: mark#(U13(X)) -> a__U13#(mark(X)) p33: mark#(U13(X)) -> mark#(X) p34: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p35: mark#(U21(X1,X2)) -> mark#(X1) p36: mark#(U22(X)) -> a__U22#(mark(X)) p37: mark#(U22(X)) -> mark#(X) p38: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p39: mark#(U31(X1,X2)) -> mark#(X1) p40: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p41: mark#(U41(X1,X2,X3)) -> mark#(X1) p42: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p43: mark#(plus(X1,X2)) -> mark#(X1) p44: mark#(plus(X1,X2)) -> mark#(X2) p45: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p46: mark#(and(X1,X2)) -> mark#(X1) p47: mark#(isNatKind(X)) -> a__isNatKind#(X) p48: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p25: a__U41#(tt(),M,N) -> mark#(M) p26: mark#(U41(X1,X2,X3)) -> mark#(X1) p27: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p28: a__U41#(tt(),M,N) -> mark#(N) p29: mark#(U31(X1,X2)) -> mark#(X1) p30: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p31: a__U31#(tt(),N) -> mark#(N) p32: mark#(U22(X)) -> mark#(X) p33: mark#(U21(X1,X2)) -> mark#(X1) p34: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p35: mark#(U13(X)) -> mark#(X) p36: mark#(isNat(X)) -> a__isNat#(X) p37: mark#(U12(X1,X2)) -> mark#(X1) p38: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p39: mark#(U11(X1,X2,X3)) -> mark#(X1) p40: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p41: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p42: a__plus#(N,|0|()) -> a__isNat#(N) p43: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p44: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 1 tt_A() = 0 a__U12#_A(x1,x2) = 1 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 1 s_A(x1) = x1 + 3 a__isNatKind#_A(x1) = 1 plus_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x2 + 1 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 a__U21#_A(x1,x2) = 1 a__and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 a__U41#_A(x1,x2,x3) = x2 + x3 + 2 U41_A(x1,x2,x3) = x1 + x2 + x3 + 3 U31_A(x1,x2) = x1 + x2 + 3 a__U31#_A(x1,x2) = x2 + 2 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 |0|_A() = 4 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 3 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__plus_A(x1,x2) = x1 + x2 precedence: a__plus# = a__U41# > a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__U21# > a__U31# > tt = a__isNat = s = plus = a__isNatKind = isNatKind = and = mark = a__and = isNat = U41 = U31 = U22 = U21 = U13 = U12 = U11 = |0| = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(a__U41#) = [] pi(U41) = [] pi(U31) = [] pi(a__U31#) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(|0|) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p28 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p25: a__U41#(tt(),M,N) -> mark#(M) p26: mark#(U41(X1,X2,X3)) -> mark#(X1) p27: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p28: mark#(U31(X1,X2)) -> mark#(X1) p29: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p30: a__U31#(tt(),N) -> mark#(N) p31: mark#(U22(X)) -> mark#(X) p32: mark#(U21(X1,X2)) -> mark#(X1) p33: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p34: mark#(U13(X)) -> mark#(X) p35: mark#(isNat(X)) -> a__isNat#(X) p36: mark#(U12(X1,X2)) -> mark#(X1) p37: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p38: mark#(U11(X1,X2,X3)) -> mark#(X1) p39: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p40: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p41: a__plus#(N,|0|()) -> a__isNat#(N) p42: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p43: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p28: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p29: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p30: a__plus#(N,|0|()) -> a__isNat#(N) p31: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p32: a__U41#(tt(),M,N) -> mark#(M) p33: mark#(U41(X1,X2,X3)) -> mark#(X1) p34: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p35: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p36: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p37: a__plus#(N,s(M)) -> a__isNat#(M) p38: mark#(plus(X1,X2)) -> mark#(X1) p39: mark#(plus(X1,X2)) -> mark#(X2) p40: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p41: mark#(and(X1,X2)) -> mark#(X1) p42: mark#(isNatKind(X)) -> a__isNatKind#(X) p43: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 3 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 mark#_A(x1) = x1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 0 s_A(x1) = x1 + 2 a__U21#_A(x1,x2) = 0 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 4 a__U31#_A(x1,x2) = x2 + 2 U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__U41#_A(x1,x2,x3) = x2 + x3 + 3 a__plus#_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 4 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__plus_A(x1,x2) = x1 + x2 + 3 precedence: a__isNat = a__and = a__isNatKind = isNatKind = mark = U12 = isNat = U13 = a__U11 = a__U12 = a__U13 = a__U21 > plus = a__U41 = a__plus > |0| > tt = a__U22 > and > a__U11# = a__U12# = a__isNat# = a__and# = mark# = U11 = a__isNatKind# = s = a__U21# = U21 = U22 = U31 = a__U31# = U41 = a__U41# = a__plus# = a__U31 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(U41) = [] pi(a__U41#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [2, 3] pi(a__plus) = [2] The next rules are strictly ordered: p32 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p28: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p29: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p30: a__plus#(N,|0|()) -> a__isNat#(N) p31: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p32: mark#(U41(X1,X2,X3)) -> mark#(X1) p33: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p34: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p35: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p36: a__plus#(N,s(M)) -> a__isNat#(M) p37: mark#(plus(X1,X2)) -> mark#(X1) p38: mark#(plus(X1,X2)) -> mark#(X2) p39: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p40: mark#(and(X1,X2)) -> mark#(X1) p41: mark#(isNatKind(X)) -> a__isNatKind#(X) p42: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p25: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p26: a__plus#(N,|0|()) -> a__isNat#(N) p27: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p28: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p29: a__U31#(tt(),N) -> mark#(N) p30: mark#(U41(X1,X2,X3)) -> mark#(X1) p31: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p32: mark#(U31(X1,X2)) -> mark#(X1) p33: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p34: mark#(U22(X)) -> mark#(X) p35: mark#(U21(X1,X2)) -> mark#(X1) p36: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p37: mark#(U13(X)) -> mark#(X) p38: mark#(isNat(X)) -> a__isNat#(X) p39: mark#(U12(X1,X2)) -> mark#(X1) p40: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p41: mark#(U11(X1,X2,X3)) -> mark#(X1) p42: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 s_A(x1) = x1 + 3 a__isNatKind#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 1 a__U21#_A(x1,x2) = 0 a__and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 a__U41#_A(x1,x2,x3) = x2 + x3 + 2 |0|_A() = 3 a__U31#_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 U31_A(x1,x2) = x1 + x2 + 2 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 2 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__plus_A(x1,x2) = x1 + x2 + 2 precedence: a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__U21# > a__U41# > tt = a__isNat = s = plus = a__isNatKind = isNatKind = and = mark = a__plus# = a__and = isNat = |0| = a__U31# = U41 = U31 = U22 = U21 = U13 = U12 = U11 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [2] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(a__U41#) = [] pi(|0|) = [] pi(a__U31#) = [] pi(U41) = [] pi(U31) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p24 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p25: a__plus#(N,|0|()) -> a__isNat#(N) p26: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p27: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p28: a__U31#(tt(),N) -> mark#(N) p29: mark#(U41(X1,X2,X3)) -> mark#(X1) p30: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p31: mark#(U31(X1,X2)) -> mark#(X1) p32: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p33: mark#(U22(X)) -> mark#(X) p34: mark#(U21(X1,X2)) -> mark#(X1) p35: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p36: mark#(U13(X)) -> mark#(X) p37: mark#(isNat(X)) -> a__isNat#(X) p38: mark#(U12(X1,X2)) -> mark#(X1) p39: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p40: mark#(U11(X1,X2,X3)) -> mark#(X1) p41: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p28: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p29: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p30: a__plus#(N,|0|()) -> a__isNat#(N) p31: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p32: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p33: a__plus#(N,s(M)) -> a__isNat#(M) p34: mark#(U41(X1,X2,X3)) -> mark#(X1) p35: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p36: mark#(plus(X1,X2)) -> mark#(X1) p37: mark#(plus(X1,X2)) -> mark#(X2) p38: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p39: mark#(and(X1,X2)) -> mark#(X1) p40: mark#(isNatKind(X)) -> a__isNatKind#(X) p41: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 1 tt_A() = 0 a__U12#_A(x1,x2) = 1 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 1 plus_A(x1,x2) = x1 + x2 + 2 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 + 1 mark#_A(x1) = x1 + 1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 1 s_A(x1) = x1 + 2 a__U21#_A(x1,x2) = 1 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 3 a__U31#_A(x1,x2) = x2 + 2 U41_A(x1,x2,x3) = x1 + x2 + x3 + 4 a__U41#_A(x1,x2,x3) = x2 + x3 + 2 a__plus#_A(x1,x2) = x1 + x2 + 1 |0|_A() = 3 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 3 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 4 a__plus_A(x1,x2) = x1 + x2 + 2 precedence: a__plus# > tt = a__isNat = plus = a__and = a__isNatKind = U11 = mark = s = U13 = U41 = |0| = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U41 = a__plus > a__U11# = a__U12# = a__isNat# = isNatKind = a__and# = mark# = U12 = isNat = a__isNatKind# = a__U21# = U21 = U22 = U31 = a__U31# = a__U41# = and = a__U31 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(U41) = [] pi(a__U41#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [2] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p27 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p28: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p29: a__plus#(N,|0|()) -> a__isNat#(N) p30: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p31: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p32: a__plus#(N,s(M)) -> a__isNat#(M) p33: mark#(U41(X1,X2,X3)) -> mark#(X1) p34: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p35: mark#(plus(X1,X2)) -> mark#(X1) p36: mark#(plus(X1,X2)) -> mark#(X2) p37: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p38: mark#(and(X1,X2)) -> mark#(X1) p39: mark#(isNatKind(X)) -> a__isNatKind#(X) p40: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__plus#(N,|0|()) -> a__isNat#(N) p25: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p26: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p27: a__U31#(tt(),N) -> mark#(N) p28: mark#(U41(X1,X2,X3)) -> mark#(X1) p29: mark#(U31(X1,X2)) -> mark#(X1) p30: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p31: mark#(U22(X)) -> mark#(X) p32: mark#(U21(X1,X2)) -> mark#(X1) p33: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p34: mark#(U13(X)) -> mark#(X) p35: mark#(isNat(X)) -> a__isNat#(X) p36: mark#(U12(X1,X2)) -> mark#(X1) p37: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p38: mark#(U11(X1,X2,X3)) -> mark#(X1) p39: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 3 tt_A() = 0 a__U12#_A(x1,x2) = 3 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 3 s_A(x1) = x1 + 4 a__isNatKind#_A(x1) = 3 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 + 3 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 1 a__U21#_A(x1,x2) = 3 a__and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 |0|_A() = 5 a__U31#_A(x1,x2) = x2 + 4 U41_A(x1,x2,x3) = x1 + x2 + x3 + 6 U31_A(x1,x2) = x1 + x2 + 7 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 7 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 2 precedence: a__plus# > a__U31# > a__U11# = tt = a__U12# = a__isNat = a__isNat# = s = a__isNatKind# = plus = a__and# = a__isNatKind = isNatKind = mark# = and = mark = a__U21# = a__and = isNat = |0| = U41 = U31 = U22 = U21 = U13 = U12 = U11 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [2] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(|0|) = [] pi(a__U31#) = [] pi(U41) = [] pi(U31) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p22 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p23: a__plus#(N,|0|()) -> a__isNat#(N) p24: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p25: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p26: a__U31#(tt(),N) -> mark#(N) p27: mark#(U41(X1,X2,X3)) -> mark#(X1) p28: mark#(U31(X1,X2)) -> mark#(X1) p29: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p30: mark#(U22(X)) -> mark#(X) p31: mark#(U21(X1,X2)) -> mark#(X1) p32: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p33: mark#(U13(X)) -> mark#(X) p34: mark#(isNat(X)) -> a__isNat#(X) p35: mark#(U12(X1,X2)) -> mark#(X1) p36: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p37: mark#(U11(X1,X2,X3)) -> mark#(X1) p38: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> mark#(X1) p27: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p28: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p29: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p30: a__plus#(N,|0|()) -> a__isNat#(N) p31: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p32: a__plus#(N,s(M)) -> a__isNat#(M) p33: mark#(plus(X1,X2)) -> mark#(X1) p34: mark#(plus(X1,X2)) -> mark#(X2) p35: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p36: mark#(and(X1,X2)) -> mark#(X1) p37: mark#(isNatKind(X)) -> a__isNatKind#(X) p38: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 4 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 mark#_A(x1) = x1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 0 s_A(x1) = x1 + 1 a__U21#_A(x1,x2) = 0 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 3 a__U31#_A(x1,x2) = x2 + 2 U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__plus#_A(x1,x2) = x1 + 3 |0|_A() = 1 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 3 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__plus_A(x1,x2) = x1 + x2 + 4 precedence: a__isNat = a__and = a__isNatKind = mark = U21 = U22 = U31 = |0| = and = a__U11 = a__U21 = a__U22 = a__U31 > isNatKind = isNat = a__U12 > U12 = a__plus > s = a__U41 > a__U11# = tt = a__U12# = a__isNat# = plus = a__and# = mark# = U11 = a__isNatKind# = a__U21# = U13 = a__U31# = U41 = a__plus# = a__U13 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(U41) = [2] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [1, 2] The next rules are strictly ordered: p26 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p27: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p28: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p29: a__plus#(N,|0|()) -> a__isNat#(N) p30: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p31: a__plus#(N,s(M)) -> a__isNat#(M) p32: mark#(plus(X1,X2)) -> mark#(X1) p33: mark#(plus(X1,X2)) -> mark#(X2) p34: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p35: mark#(and(X1,X2)) -> mark#(X1) p36: mark#(isNatKind(X)) -> a__isNatKind#(X) p37: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p23: a__plus#(N,|0|()) -> a__isNat#(N) p24: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p25: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p26: a__U31#(tt(),N) -> mark#(N) p27: mark#(U31(X1,X2)) -> mark#(X1) p28: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p29: mark#(U22(X)) -> mark#(X) p30: mark#(U21(X1,X2)) -> mark#(X1) p31: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p32: mark#(U13(X)) -> mark#(X) p33: mark#(isNat(X)) -> a__isNat#(X) p34: mark#(U12(X1,X2)) -> mark#(X1) p35: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p36: mark#(U11(X1,X2,X3)) -> mark#(X1) p37: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 2 tt_A() = 0 a__U12#_A(x1,x2) = 2 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 2 s_A(x1) = x1 a__isNatKind#_A(x1) = 2 plus_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x1 + x2 + 2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 2 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 2 a__U21#_A(x1,x2) = 2 a__and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 |0|_A() = 1 a__U31#_A(x1,x2) = x2 + 2 U31_A(x1,x2) = x1 + x2 + 1 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 a__plus_A(x1,x2) = x1 + x2 U41_A(x1,x2,x3) = x2 + x3 precedence: a__U31# > a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__plus# = a__U21# > tt = a__isNat = a__isNatKind = and = mark = a__and = isNat = U22 = U21 = U13 = U12 = U11 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__plus > U31 > isNatKind = a__U41 = U41 > s = plus = |0| partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(|0|) = [] pi(a__U31#) = [] pi(U31) = [2] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p25 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p23: a__plus#(N,|0|()) -> a__isNat#(N) p24: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p25: a__U31#(tt(),N) -> mark#(N) p26: mark#(U31(X1,X2)) -> mark#(X1) p27: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p28: mark#(U22(X)) -> mark#(X) p29: mark#(U21(X1,X2)) -> mark#(X1) p30: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p31: mark#(U13(X)) -> mark#(X) p32: mark#(isNat(X)) -> a__isNat#(X) p33: mark#(U12(X1,X2)) -> mark#(X1) p34: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p35: mark#(U11(X1,X2,X3)) -> mark#(X1) p36: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p27: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p28: a__plus#(N,|0|()) -> a__isNat#(N) p29: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p30: a__plus#(N,s(M)) -> a__isNat#(M) p31: mark#(plus(X1,X2)) -> mark#(X1) p32: mark#(plus(X1,X2)) -> mark#(X2) p33: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p34: mark#(and(X1,X2)) -> mark#(X1) p35: mark#(isNatKind(X)) -> a__isNatKind#(X) p36: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 4 tt_A() = 0 a__U12#_A(x1,x2) = 4 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 4 plus_A(x1,x2) = x1 + x2 + 4 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 + 4 mark#_A(x1) = x1 + 4 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 4 s_A(x1) = x1 + 1 a__U21#_A(x1,x2) = 4 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 2 a__U31#_A(x1,x2) = x2 + 5 a__plus#_A(x1,x2) = 8 |0|_A() = 3 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 2 a__U41_A(x1,x2,x3) = x2 + x3 + 5 a__plus_A(x1,x2) = x1 + x2 + 4 U41_A(x1,x2,x3) = x2 + x3 + 5 precedence: a__U11# = a__U12# = a__isNat# = a__and# = mark# = a__isNatKind# = a__U21# = a__U31# > a__plus# > a__isNat = plus = a__and = a__isNatKind = mark = U12 = isNat = s = U21 = U22 = U31 = |0| = and = a__U11 = a__U12 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = U41 > U11 > tt = a__U13 > U13 > isNatKind partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [2] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p30 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p27: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p28: a__plus#(N,|0|()) -> a__isNat#(N) p29: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p30: mark#(plus(X1,X2)) -> mark#(X1) p31: mark#(plus(X1,X2)) -> mark#(X2) p32: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p33: mark#(and(X1,X2)) -> mark#(X1) p34: mark#(isNatKind(X)) -> a__isNatKind#(X) p35: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p16: a__plus#(N,|0|()) -> a__isNat#(N) p17: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p18: a__U21#(tt(),V1) -> a__isNat#(V1) p19: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p20: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p21: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p22: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p23: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p24: mark#(U31(X1,X2)) -> mark#(X1) p25: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p26: a__U31#(tt(),N) -> mark#(N) p27: mark#(U22(X)) -> mark#(X) p28: mark#(U21(X1,X2)) -> mark#(X1) p29: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p30: mark#(U13(X)) -> mark#(X) p31: mark#(isNat(X)) -> a__isNat#(X) p32: mark#(U12(X1,X2)) -> mark#(X1) p33: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p34: mark#(U11(X1,X2,X3)) -> mark#(X1) p35: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 2 tt_A() = 0 a__U12#_A(x1,x2) = 2 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 2 s_A(x1) = x1 + 2 a__isNatKind#_A(x1) = 2 plus_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x2 + 2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 2 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x2 + 1 a__and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 |0|_A() = 3 a__U21#_A(x1,x2) = 2 U31_A(x1,x2) = x1 + x2 a__U31#_A(x1,x2) = x2 + 2 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 a__U41_A(x1,x2,x3) = x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 U41_A(x1,x2,x3) = x2 + x3 + 2 precedence: a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__plus# = a__U21# = a__U31# > a__isNatKind = isNatKind = and = mark = a__and = |0| = U31 = a__U31 > plus = a__plus > tt = a__isNat = s = isNat = U22 = U21 = U13 = U12 = U11 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U41 = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__and) = [] pi(isNat) = [] pi(|0|) = [] pi(a__U21#) = [] pi(U31) = [] pi(a__U31#) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,|0|()) -> a__isNat#(N) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p25: a__U31#(tt(),N) -> mark#(N) p26: mark#(U22(X)) -> mark#(X) p27: mark#(U21(X1,X2)) -> mark#(X1) p28: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p29: mark#(U13(X)) -> mark#(X) p30: mark#(isNat(X)) -> a__isNat#(X) p31: mark#(U12(X1,X2)) -> mark#(X1) p32: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p33: mark#(U11(X1,X2,X3)) -> mark#(X1) p34: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p27: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p28: a__plus#(N,|0|()) -> a__isNat#(N) p29: mark#(plus(X1,X2)) -> mark#(X1) p30: mark#(plus(X1,X2)) -> mark#(X2) p31: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p32: mark#(and(X1,X2)) -> mark#(X1) p33: mark#(isNatKind(X)) -> a__isNatKind#(X) p34: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 2 tt_A() = 0 a__U12#_A(x1,x2) = 2 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 2 plus_A(x1,x2) = x1 + x2 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 + 2 mark#_A(x1) = x1 + 2 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 2 s_A(x1) = x1 + 1 a__U21#_A(x1,x2) = x1 + 2 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 1 a__U31#_A(x1,x2) = x2 + 3 a__plus#_A(x1,x2) = x2 |0|_A() = 3 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 1 a__U41_A(x1,x2,x3) = x1 + x2 + x3 + 1 a__plus_A(x1,x2) = x1 + x2 U41_A(x1,x2,x3) = x1 + x2 + x3 + 1 precedence: tt = a__isNat = plus = a__and = a__isNatKind = isNatKind = mark = U12 = U22 = a__plus# = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U41 = a__plus > a__U31 > a__U11# = a__U12# = a__isNat# = a__and# = mark# = U11 = isNat = a__isNatKind# = s = a__U21# = U13 = U21 = U31 = a__U31# = |0| = and = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p27 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p27: a__plus#(N,|0|()) -> a__isNat#(N) p28: mark#(plus(X1,X2)) -> mark#(X1) p29: mark#(plus(X1,X2)) -> mark#(X2) p30: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p31: mark#(and(X1,X2)) -> mark#(X1) p32: mark#(isNatKind(X)) -> a__isNatKind#(X) p33: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,|0|()) -> a__isNat#(N) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: mark#(U31(X1,X2)) -> mark#(X1) p23: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p24: a__U31#(tt(),N) -> mark#(N) p25: mark#(U22(X)) -> mark#(X) p26: mark#(U21(X1,X2)) -> mark#(X1) p27: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p28: mark#(U13(X)) -> mark#(X) p29: mark#(isNat(X)) -> a__isNat#(X) p30: mark#(U12(X1,X2)) -> mark#(X1) p31: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p32: mark#(U11(X1,X2,X3)) -> mark#(X1) p33: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 s_A(x1) = x1 a__isNatKind#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + 1 |0|_A() = 1 a__U21#_A(x1,x2) = 0 a__and_A(x1,x2) = x1 + x2 U31_A(x1,x2) = x1 + x2 + 2 a__U31#_A(x1,x2) = x1 + x2 + 1 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 isNat_A(x1) = 0 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 2 a__U41_A(x1,x2,x3) = x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 + 2 U41_A(x1,x2,x3) = x2 + x3 + 2 precedence: a__U31# > a__isNat = a__isNatKind = mark = a__and = a__U11 > a__U21 = a__U22 > |0| > a__plus > a__U41 > s > plus > U41 > U21 > isNatKind > and = U22 = U13 = U11 = a__U12 = a__U13 > tt > U31 = isNat = a__U31 > U12 > a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__plus# = a__U21# partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [1] pi(|0|) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U31) = [] pi(a__U31#) = [1] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(isNat) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p23 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,|0|()) -> a__isNat#(N) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: mark#(U31(X1,X2)) -> mark#(X1) p23: a__U31#(tt(),N) -> mark#(N) p24: mark#(U22(X)) -> mark#(X) p25: mark#(U21(X1,X2)) -> mark#(X1) p26: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p27: mark#(U13(X)) -> mark#(X) p28: mark#(isNat(X)) -> a__isNat#(X) p29: mark#(U12(X1,X2)) -> mark#(X1) p30: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p31: mark#(U11(X1,X2,X3)) -> mark#(X1) p32: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p24, p25, p26, p27, p28, p29, p30, p31, p32} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p25: a__plus#(N,|0|()) -> a__isNat#(N) p26: mark#(plus(X1,X2)) -> mark#(X1) p27: mark#(plus(X1,X2)) -> mark#(X2) p28: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p29: mark#(and(X1,X2)) -> mark#(X1) p30: mark#(isNatKind(X)) -> a__isNatKind#(X) p31: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 1 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 mark#_A(x1) = x1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 0 s_A(x1) = x1 + 1 a__U21#_A(x1,x2) = 0 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 1 a__plus#_A(x1,x2) = 0 |0|_A() = 0 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 2 precedence: a__U11# = tt = a__U12# = a__isNat = a__isNat# = plus = a__and = a__isNatKind = isNatKind = a__and# = mark# = U11 = mark = U12 = isNat = a__isNatKind# = s = a__U21# = U13 = U21 = U22 = U31 = a__plus# = |0| = and = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p26 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p25: a__plus#(N,|0|()) -> a__isNat#(N) p26: mark#(plus(X1,X2)) -> mark#(X2) p27: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p28: mark#(and(X1,X2)) -> mark#(X1) p29: mark#(isNatKind(X)) -> a__isNatKind#(X) p30: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p14: a__plus#(N,|0|()) -> a__isNat#(N) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__U21#(tt(),V1) -> a__isNat#(V1) p17: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p18: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p19: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p20: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p21: mark#(U31(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U21(X1,X2)) -> mark#(X1) p24: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p25: mark#(U13(X)) -> mark#(X) p26: mark#(isNat(X)) -> a__isNat#(X) p27: mark#(U12(X1,X2)) -> mark#(X1) p28: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p29: mark#(U11(X1,X2,X3)) -> mark#(X1) p30: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 3 tt_A() = 0 a__U12#_A(x1,x2) = 3 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 3 s_A(x1) = x1 + 4 a__isNatKind#_A(x1) = 3 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 + 3 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x2 + 1 |0|_A() = 4 a__U21#_A(x1,x2) = 3 a__and_A(x1,x2) = x1 + x2 U31_A(x1,x2) = x1 + x2 + 5 U22_A(x1) = x1 U21_A(x1,x2) = x1 U13_A(x1) = x1 isNat_A(x1) = 0 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 5 a__U41_A(x1,x2,x3) = x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 2 U41_A(x1,x2,x3) = x2 + x3 + 6 precedence: a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__U21# > a__isNatKind = mark = a__and > and > a__isNat > a__plus > plus = |0| > a__U21 > a__U11 > U11 > a__U31 > U21 > a__U12 > isNatKind > s = a__U41 = U41 > U31 = U13 = U12 = a__U13 = a__U22 > tt > U22 > a__plus# = isNat partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [2] pi(|0|) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U31) = [1, 2] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(isNat) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(U41) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p14: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p15: a__U21#(tt(),V1) -> a__isNat#(V1) p16: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p18: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p19: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p20: mark#(U31(X1,X2)) -> mark#(X1) p21: mark#(U22(X)) -> mark#(X) p22: mark#(U21(X1,X2)) -> mark#(X1) p23: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p24: mark#(U13(X)) -> mark#(X) p25: mark#(isNat(X)) -> a__isNat#(X) p26: mark#(U12(X1,X2)) -> mark#(X1) p27: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p28: mark#(U11(X1,X2,X3)) -> mark#(X1) p29: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(plus(X1,X2)) -> mark#(X2) p25: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p26: mark#(and(X1,X2)) -> mark#(X1) p27: mark#(isNatKind(X)) -> a__isNatKind#(X) p28: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 0 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 1 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 mark#_A(x1) = x1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 U12_A(x1,x2) = x1 isNat_A(x1) = 0 a__isNatKind#_A(x1) = 0 s_A(x1) = x1 + 1 a__U21#_A(x1,x2) = 0 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 1 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 + 1 |0|_A() = 0 U41_A(x1,x2,x3) = x2 + x3 + 2 precedence: a__U11# = tt = a__U12# = a__isNat = a__isNat# = plus = a__and = a__isNatKind = isNatKind = a__and# = mark# = U11 = mark = U12 = isNat = a__isNatKind# = s = a__U21# = U13 = U21 = U22 = U31 = and = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = |0| = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(U41) = [] The next rules are strictly ordered: p28 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(plus(X1,X2)) -> mark#(X2) p25: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p26: mark#(and(X1,X2)) -> mark#(X1) p27: mark#(isNatKind(X)) -> a__isNatKind#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(plus(X1,X2)) -> mark#(X2) p12: mark#(U31(X1,X2)) -> mark#(X1) p13: mark#(U22(X)) -> mark#(X) p14: mark#(U21(X1,X2)) -> mark#(X1) p15: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p16: a__U21#(tt(),V1) -> a__isNat#(V1) p17: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: mark#(U13(X)) -> mark#(X) p23: mark#(isNat(X)) -> a__isNat#(X) p24: mark#(U12(X1,X2)) -> mark#(X1) p25: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p26: mark#(U11(X1,X2,X3)) -> mark#(X1) p27: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 2 tt_A() = 0 a__U12#_A(x1,x2) = 2 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 2 s_A(x1) = x1 + 1 a__isNatKind#_A(x1) = 2 plus_A(x1,x2) = x1 + x2 + 1 a__and#_A(x1,x2) = x2 + 2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 2 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 1 U22_A(x1) = x1 U21_A(x1,x2) = x1 a__U21#_A(x1,x2) = 2 a__and_A(x1,x2) = x1 + x2 U13_A(x1) = x1 isNat_A(x1) = 0 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 + 1 |0|_A() = 2 U41_A(x1,x2,x3) = x2 + x3 + 2 precedence: a__U11# = tt = a__U12# = a__isNat = a__isNat# = s = a__isNatKind# = plus = a__and# = a__isNatKind = isNatKind = mark# = and = mark = U31 = U22 = U21 = a__U21# = a__and = U13 = isNat = U12 = U11 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = |0| = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(U31) = [] pi(U22) = [] pi(U21) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U13) = [] pi(isNat) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(U41) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U31(X1,X2)) -> mark#(X1) p12: mark#(U22(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> mark#(X1) p14: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p15: a__U21#(tt(),V1) -> a__isNat#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p18: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p19: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p20: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p21: mark#(U13(X)) -> mark#(X) p22: mark#(isNat(X)) -> a__isNat#(X) p23: mark#(U12(X1,X2)) -> mark#(X1) p24: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p25: mark#(U11(X1,X2,X3)) -> mark#(X1) p26: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p13: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U31(X1,X2)) -> mark#(X1) p24: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p25: mark#(and(X1,X2)) -> mark#(X1) p26: mark#(isNatKind(X)) -> a__isNatKind#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 0 tt_A() = 5 a__U12#_A(x1,x2) = 0 a__isNat_A(x1) = 5 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + 12 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 5 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 mark#_A(x1) = x1 U11_A(x1,x2,x3) = x1 mark_A(x1) = x1 + 5 U12_A(x1,x2) = x1 isNat_A(x1) = 3 a__isNatKind#_A(x1) = 0 s_A(x1) = 9 a__U21#_A(x1,x2) = 0 U13_A(x1) = x1 U21_A(x1,x2) = x1 U22_A(x1) = x1 U31_A(x1,x2) = x1 + x2 + 6 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 6 a__U41_A(x1,x2,x3) = x1 + x3 + 4 a__plus_A(x1,x2) = x1 + 12 |0|_A() = 12 U41_A(x1,x2,x3) = x1 + x3 + 4 precedence: plus = a__and = a__isNatKind = isNatKind = mark = a__U31 = a__plus > a__isNat = isNat = a__U21 > U11 = U31 = a__U11 > U12 = a__U12 > U21 > a__U11# = tt = a__U12# = a__isNat# = a__and# = mark# = a__isNatKind# = s = a__U21# = U13 = U22 = and = a__U13 = a__U22 = a__U41 = |0| = U41 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [2] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(U41) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p12: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p13: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p14: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__U21#(tt(),V1) -> a__isNat#(V1) p17: a__isNat#(s(V1)) -> a__isNatKind#(V1) p18: mark#(U13(X)) -> mark#(X) p19: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p20: mark#(U21(X1,X2)) -> mark#(X1) p21: mark#(U22(X)) -> mark#(X) p22: mark#(U31(X1,X2)) -> mark#(X1) p23: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p24: mark#(and(X1,X2)) -> mark#(X1) p25: mark#(isNatKind(X)) -> a__isNatKind#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U31(X1,X2)) -> mark#(X1) p12: mark#(U22(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> mark#(X1) p14: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p15: a__U21#(tt(),V1) -> a__isNat#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p18: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p19: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p20: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p21: mark#(U13(X)) -> mark#(X) p22: mark#(U12(X1,X2)) -> mark#(X1) p23: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p24: mark#(U11(X1,X2,X3)) -> mark#(X1) p25: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 3 tt_A() = 3 a__U12#_A(x1,x2) = 3 a__isNat_A(x1) = 3 a__isNat#_A(x1) = 3 s_A(x1) = 4 a__isNatKind#_A(x1) = 3 plus_A(x1,x2) = x1 + 7 a__and#_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 3 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 3 U31_A(x1,x2) = x1 + x2 + 3 U22_A(x1) = x1 U21_A(x1,x2) = x1 a__U21#_A(x1,x2) = 3 a__and_A(x1,x2) = x1 + x2 U13_A(x1) = x1 U12_A(x1,x2) = x1 U11_A(x1,x2,x3) = x1 a__U11_A(x1,x2,x3) = x1 a__U12_A(x1,x2) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x1 + x2 + 3 a__U41_A(x1,x2,x3) = x3 + 5 a__plus_A(x1,x2) = x1 + 7 |0|_A() = 2 isNat_A(x1) = 1 U41_A(x1,x2,x3) = x3 + 2 precedence: |0| > a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__U21# > U41 > a__isNat = a__isNatKind = and = mark = a__and = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 > tt > a__U31 = a__plus > plus = U22 > U21 > U13 > s > isNatKind > U31 > U12 = a__U41 > isNat > U11 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [1] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(U31) = [1, 2] pi(U22) = [] pi(U21) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [3] pi(a__plus) = [] pi(|0|) = [] pi(isNat) = [] pi(U41) = [3] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p14: a__U21#(tt(),V1) -> a__isNat#(V1) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p18: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p19: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p20: mark#(U13(X)) -> mark#(X) p21: mark#(U12(X1,X2)) -> mark#(X1) p22: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p23: mark#(U11(X1,X2,X3)) -> mark#(X1) p24: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(U13(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p13: a__U21#(tt(),V1) -> a__isNat#(V1) p14: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p16: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p18: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p19: a__isNat#(s(V1)) -> a__isNatKind#(V1) p20: mark#(U21(X1,X2)) -> mark#(X1) p21: mark#(U22(X)) -> mark#(X) p22: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p23: mark#(and(X1,X2)) -> mark#(X1) p24: mark#(isNatKind(X)) -> a__isNatKind#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = 2 tt_A() = 0 a__U12#_A(x1,x2) = 2 a__isNat_A(x1) = x1 a__isNat#_A(x1) = 2 plus_A(x1,x2) = x1 + x2 + 4 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 + 1 mark#_A(x1) = x1 + 1 U11_A(x1,x2,x3) = x1 + x2 + x3 + 4 mark_A(x1) = x1 U12_A(x1,x2) = x1 + x2 + 3 U13_A(x1) = x1 + 3 U21_A(x1,x2) = x1 + x2 + 3 a__U21#_A(x1,x2) = x1 + 2 a__isNatKind#_A(x1) = 1 s_A(x1) = x1 + 3 U22_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 4 a__U12_A(x1,x2) = x1 + x2 + 3 a__U13_A(x1) = x1 + 3 a__U21_A(x1,x2) = x1 + x2 + 3 a__U22_A(x1) = x1 + 3 a__U31_A(x1,x2) = x2 + 4 a__U41_A(x1,x2,x3) = x2 + x3 + 7 a__plus_A(x1,x2) = x1 + x2 + 4 |0|_A() = 0 isNat_A(x1) = x1 U31_A(x1,x2) = x2 + 4 U41_A(x1,x2,x3) = x2 + x3 + 7 precedence: a__and = a__isNatKind = mark = a__U31 = a__plus = U31 > a__isNat = a__U11 > tt = U22 = a__U21 = a__U22 > a__U11# = a__U12# = a__isNat# = a__U21# > a__and# = mark# = a__isNatKind# = and = a__U41 = U41 > plus > U12 = a__U12 = a__U13 > U13 = U21 > isNatKind = U11 = s = |0| > isNat partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [2] pi(mark) = [] pi(U12) = [] pi(U13) = [1] pi(U21) = [] pi(a__U21#) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(U22) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [1] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> mark#(X1) p8: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p9: mark#(U12(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) p11: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p12: a__U21#(tt(),V1) -> a__isNat#(V1) p13: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p14: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p15: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p16: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p17: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) p19: mark#(U21(X1,X2)) -> mark#(X1) p20: mark#(U22(X)) -> mark#(X) p21: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p22: mark#(and(X1,X2)) -> mark#(X1) p23: mark#(isNatKind(X)) -> a__isNatKind#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p14: a__U21#(tt(),V1) -> a__isNat#(V1) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p18: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p19: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p20: mark#(U13(X)) -> mark#(X) p21: mark#(U12(X1,X2)) -> mark#(X1) p22: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p23: mark#(U11(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = x2 + x3 + 3 tt_A() = 0 a__U12#_A(x1,x2) = x2 + 2 a__isNat_A(x1) = x1 + 8 a__isNat#_A(x1) = x1 + 1 s_A(x1) = x1 + 4 a__isNatKind#_A(x1) = 1 plus_A(x1,x2) = x1 + x2 + 11 a__and#_A(x1,x2) = x2 + 1 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U22_A(x1) = x1 + 2 U21_A(x1,x2) = x1 + x2 + 11 a__U21#_A(x1,x2) = x1 + x2 + 2 a__and_A(x1,x2) = x1 + x2 U13_A(x1) = x1 U12_A(x1,x2) = x1 + x2 + 9 U11_A(x1,x2,x3) = x1 + x2 + x3 + 18 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 18 a__U12_A(x1,x2) = x1 + x2 + 9 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 + x2 + 11 a__U22_A(x1) = x1 + 2 a__U31_A(x1,x2) = x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 15 a__plus_A(x1,x2) = x1 + x2 + 11 |0|_A() = 2 isNat_A(x1) = x1 + 8 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 15 precedence: a__U11# = a__isNat = a__isNat# = a__isNatKind# = a__and# = a__isNatKind = mark# = mark = a__U21# = a__and = a__U22 > isNatKind > a__U31 > a__U41 = a__plus > s > and > a__U11 = |0| > a__U12# > plus = U22 > U11 = a__U21 > U21 > U41 > U31 > a__U12 > tt = a__U13 > U12 > U13 = isNat partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [1] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [2] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(U22) = [] pi(U21) = [2] pi(a__U21#) = [1] pi(a__and) = [] pi(U13) = [] pi(U12) = [2] pi(U11) = [2] pi(a__U11) = [3] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [2] pi(|0|) = [] pi(isNat) = [] pi(U31) = [] pi(U41) = [2] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: a__U21#(tt(),V1) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p15: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p16: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p17: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p18: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p19: mark#(U13(X)) -> mark#(X) p20: mark#(U12(X1,X2)) -> mark#(X1) p21: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p22: mark#(U11(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> mark#(X1) p8: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p9: mark#(U12(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) p11: mark#(U21(X1,X2)) -> mark#(X1) p12: mark#(U22(X)) -> mark#(X) p13: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p14: mark#(and(X1,X2)) -> mark#(X1) p15: mark#(isNatKind(X)) -> a__isNatKind#(X) p16: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p17: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p18: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p20: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p21: a__U21#(tt(),V1) -> a__isNat#(V1) p22: a__isNat#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = x2 + x3 + 15 tt_A() = 0 a__U12#_A(x1,x2) = x2 + 15 a__isNat_A(x1) = x1 + 3 a__isNat#_A(x1) = x1 + 8 plus_A(x1,x2) = x1 + x2 + 7 a__and_A(x1,x2) = x1 + x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 a__and#_A(x1,x2) = x2 + 10 mark#_A(x1) = x1 + 10 U11_A(x1,x2,x3) = x1 + x2 + x3 + 9 U12_A(x1,x2) = x1 + x2 + 5 mark_A(x1) = x1 U13_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 12 U22_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 a__isNatKind#_A(x1) = 10 s_A(x1) = x1 + 11 a__U21#_A(x1,x2) = x2 + 10 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 9 a__U12_A(x1,x2) = x1 + x2 + 5 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x1 + x2 + 12 a__U22_A(x1) = x1 + 1 a__U31_A(x1,x2) = x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 18 a__plus_A(x1,x2) = x1 + x2 + 7 |0|_A() = 2 isNat_A(x1) = x1 + 3 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 18 precedence: a__and = a__isNatKind = isNatKind = mark = and = a__U31 = |0| > plus = s = a__U41 = a__plus > a__isNat = isNat > a__U11# = a__isNat# = a__U21# > a__and# = mark# = a__isNatKind# > a__U12# > U41 > U31 > U21 = U22 = a__U21 = a__U22 > tt = U11 = U12 = U13 = a__U11 = a__U12 = a__U13 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [2] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(mark) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(and) = [] pi(a__isNatKind#) = [] pi(s) = [] pi(a__U21#) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [2] pi(U41) = [2, 3] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U11(X1,X2,X3)) -> mark#(X1) p7: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p8: mark#(U12(X1,X2)) -> mark#(X1) p9: mark#(U13(X)) -> mark#(X) p10: mark#(U21(X1,X2)) -> mark#(X1) p11: mark#(U22(X)) -> mark#(X) p12: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p13: mark#(and(X1,X2)) -> mark#(X1) p14: mark#(isNatKind(X)) -> a__isNatKind#(X) p15: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p16: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p20: a__U21#(tt(),V1) -> a__isNat#(V1) p21: a__isNat#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U13(X)) -> mark#(X) p14: mark#(U12(X1,X2)) -> mark#(X1) p15: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p16: mark#(U11(X1,X2,X3)) -> mark#(X1) p17: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p18: a__U21#(tt(),V1) -> a__isNat#(V1) p19: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2,x3) = x2 + x3 + 1 tt_A() = 0 a__U12#_A(x1,x2) = x1 + x2 a__isNat_A(x1) = x1 a__isNat#_A(x1) = x1 s_A(x1) = x1 a__isNatKind#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 4 a__and#_A(x1,x2) = x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U22_A(x1) = x1 U21_A(x1,x2) = x1 + x2 U13_A(x1) = x1 + 1 U12_A(x1,x2) = x1 + x2 + 2 U11_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U21#_A(x1,x2) = x2 a__and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U12_A(x1,x2) = x1 + x2 + 2 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x1 + x2 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x2 + 2 a__U41_A(x1,x2,x3) = x2 + x3 + 4 a__plus_A(x1,x2) = x1 + x2 + 4 |0|_A() = 1 isNat_A(x1) = x1 U31_A(x1,x2) = x2 + 2 U41_A(x1,x2,x3) = x2 + x3 + 4 precedence: a__isNatKind = mark = a__and = a__U31 = a__U41 = a__plus > s > and > isNatKind > |0| > a__U11# = tt = a__U12# = a__isNat = a__isNat# = a__isNatKind# = plus = a__and# = mark# = U22 = U21 = U13 = U12 = U11 = a__U21# = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = isNat = U31 = U41 partial status: pi(a__U11#) = [2, 3] pi(tt) = [] pi(a__U12#) = [1, 2] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [2] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [1] pi(U12) = [] pi(U11) = [] pi(a__U21#) = [] pi(a__and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [1] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [2] pi(U41) = [2] The next rules are strictly ordered: p20 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U13(X)) -> mark#(X) p14: mark#(U12(X1,X2)) -> mark#(X1) p15: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p16: mark#(U11(X1,X2,X3)) -> mark#(X1) p17: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p18: a__U21#(tt(),V1) -> a__isNat#(V1) p19: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p20: a__U11#(tt(),V1,V2) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p3: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(U11(X1,X2,X3)) -> mark#(X1) p6: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p7: mark#(U12(X1,X2)) -> mark#(X1) p8: mark#(U13(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(isNatKind(X)) -> a__isNatKind#(X) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U12#_A(x1,x2) = x2 + 5 tt_A() = 0 a__isNat#_A(x1) = x1 + 4 plus_A(x1,x2) = x1 + x2 + 9 a__isNatKind#_A(x1) = 2 a__and#_A(x1,x2) = x2 + 2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 2 U11_A(x1,x2,x3) = x1 + x2 + x3 + 8 U12_A(x1,x2) = x1 + x2 + 4 mark_A(x1) = x1 U13_A(x1) = x1 U21_A(x1,x2) = x1 + x2 + 7 U22_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 8 a__U21#_A(x1,x2) = x2 + 5 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 8 a__U12_A(x1,x2) = x1 + x2 + 4 a__isNat_A(x1) = x1 + 3 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 + x2 + 7 a__U22_A(x1) = x1 + 3 a__U31_A(x1,x2) = x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 17 a__plus_A(x1,x2) = x1 + x2 + 9 a__and_A(x1,x2) = x1 + x2 |0|_A() = 2 isNat_A(x1) = x1 + 3 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 17 precedence: a__isNatKind# = a__and# = mark# > a__U21# > a__isNat# > a__U12# = tt = plus = a__isNatKind = isNatKind = U11 = U12 = mark = U13 = U21 = U22 = and = s = a__U11 = a__U12 = a__isNat = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = a__and = |0| = isNat = U31 = U41 partial status: pi(a__U12#) = [] pi(tt) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__isNatKind#) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(mark) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(and) = [] pi(s) = [] pi(a__U21#) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p3: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(U11(X1,X2,X3)) -> mark#(X1) p6: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p7: mark#(U12(X1,X2)) -> mark#(X1) p8: mark#(U13(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(isNatKind(X)) -> a__isNatKind#(X) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p16: a__U21#(tt(),V1) -> a__isNat#(V1) p17: a__isNat#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(s(V1)) -> a__isNatKind#(V1) p3: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(isNatKind(X)) -> a__isNatKind#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(U22(X)) -> mark#(X) p11: mark#(U21(X1,X2)) -> mark#(X1) p12: mark#(U13(X)) -> mark#(X) p13: mark#(U12(X1,X2)) -> mark#(X1) p14: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p15: mark#(U11(X1,X2,X3)) -> mark#(X1) p16: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U12#_A(x1,x2) = x1 + x2 + 3 tt_A() = 0 a__isNat#_A(x1) = x1 + 2 s_A(x1) = x1 + 6 a__isNatKind#_A(x1) = 4 plus_A(x1,x2) = x1 + x2 + 3 a__and#_A(x1,x2) = x2 + 4 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 4 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U22_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 5 U13_A(x1) = x1 U12_A(x1,x2) = x1 + x2 U11_A(x1,x2,x3) = x1 + x2 + x3 + 1 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 1 a__U12_A(x1,x2) = x1 + x2 a__isNat_A(x1) = x1 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 + x2 + 5 a__U22_A(x1) = x1 + 1 a__U31_A(x1,x2) = x2 + 2 a__U41_A(x1,x2,x3) = x2 + x3 + 9 a__plus_A(x1,x2) = x1 + x2 + 3 a__and_A(x1,x2) = x1 + x2 |0|_A() = 1 isNat_A(x1) = x1 U31_A(x1,x2) = x2 + 2 U41_A(x1,x2,x3) = x2 + x3 + 9 precedence: s = a__isNatKind = isNatKind = mark = U22 = U11 = a__U11 = a__isNat = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = a__and = isNat = U31 = U41 > and = U12 = a__U12 > a__U12# = a__isNat# = U21 > tt = a__isNatKind# = plus = a__and# = mark# = U13 = a__U13 = |0| partial status: pi(a__U12#) = [1, 2] pi(tt) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [2] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(U22) = [] pi(U21) = [1] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p3: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p4: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(isNatKind(X)) -> a__isNatKind#(X) p7: mark#(and(X1,X2)) -> mark#(X1) p8: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p9: mark#(U22(X)) -> mark#(X) p10: mark#(U21(X1,X2)) -> mark#(X1) p11: mark#(U13(X)) -> mark#(X) p12: mark#(U12(X1,X2)) -> mark#(X1) p13: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p14: mark#(U11(X1,X2,X3)) -> mark#(X1) p15: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p3: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(U11(X1,X2,X3)) -> mark#(X1) p6: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p7: mark#(U12(X1,X2)) -> mark#(X1) p8: mark#(U13(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(isNatKind(X)) -> a__isNatKind#(X) p14: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U12#_A(x1,x2) = x2 + 11 tt_A() = 0 a__isNat#_A(x1) = 10 plus_A(x1,x2) = x1 + x2 + 11 a__isNatKind#_A(x1) = 9 a__and#_A(x1,x2) = x2 + 9 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 mark#_A(x1) = x1 + 9 U11_A(x1,x2,x3) = x1 + x2 + x3 + 10 U12_A(x1,x2) = x1 + x2 + 5 mark_A(x1) = x1 U13_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 6 U22_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 7 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 10 a__U12_A(x1,x2) = x1 + x2 + 5 a__isNat_A(x1) = x1 + 4 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x1 + x2 + 6 a__U22_A(x1) = x1 + 1 a__U31_A(x1,x2) = x2 + 12 a__U41_A(x1,x2,x3) = x2 + x3 + 18 a__plus_A(x1,x2) = x1 + x2 + 11 a__and_A(x1,x2) = x1 + x2 |0|_A() = 1 isNat_A(x1) = x1 + 4 U31_A(x1,x2) = x2 + 12 U41_A(x1,x2,x3) = x2 + x3 + 18 precedence: a__U12# > a__isNat# > a__isNatKind# = a__and# = mark# > tt = a__isNatKind = U11 = U12 = mark = and = a__U11 = a__U12 = a__U21 = a__and = |0| > a__isNat = isNat > a__U22 = a__U31 = a__plus > a__U41 > U41 > U22 = U31 > plus = isNatKind > s > U13 = a__U13 > U21 partial status: pi(a__U12#) = [2] pi(tt) = [] pi(a__isNat#) = [] pi(plus) = [2] pi(a__isNatKind#) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(mark) = [] pi(U13) = [1] pi(U21) = [] pi(U22) = [] pi(and) = [] pi(s) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [1] pi(a__U13) = [1] pi(a__U21) = [] pi(a__U22) = [1] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [1] pi(U31) = [2] pi(U41) = [3] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U12#(tt(),V2) -> a__isNat#(V2) p2: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p3: a__and#(tt(),X) -> mark#(X) p4: mark#(U11(X1,X2,X3)) -> mark#(X1) p5: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p6: mark#(U12(X1,X2)) -> mark#(X1) p7: mark#(U13(X)) -> mark#(X) p8: mark#(U21(X1,X2)) -> mark#(X1) p9: mark#(U22(X)) -> mark#(X) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(isNatKind(X)) -> a__isNatKind#(X) p13: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p14: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(isNatKind(X)) -> a__isNatKind#(X) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: mark#(and(X1,X2)) -> mark#(X1) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(U22(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) p11: mark#(U12(X1,X2)) -> mark#(X1) p12: mark#(U11(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = 1 plus_A(x1,x2) = x1 + x2 + 3 a__and#_A(x1,x2) = x2 + 1 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 tt_A() = 0 mark#_A(x1) = x1 + 1 s_A(x1) = x1 + 3 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U22_A(x1) = x1 + 2 U21_A(x1,x2) = x1 + x2 + 2 U13_A(x1) = x1 + 1 U12_A(x1,x2) = x1 + x2 + 2 U11_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U11_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U12_A(x1,x2) = x1 + x2 + 2 a__isNat_A(x1) = x1 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x1 + x2 + 2 a__U22_A(x1) = x1 + 2 a__U31_A(x1,x2) = x2 a__U41_A(x1,x2,x3) = x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 3 a__and_A(x1,x2) = x1 + x2 |0|_A() = 1 isNat_A(x1) = x1 U31_A(x1,x2) = x2 U41_A(x1,x2,x3) = x2 + x3 + 6 precedence: a__isNatKind# = plus = a__and# = a__isNatKind = isNatKind = tt = mark# = s = and = mark = U22 = U21 = U13 = U12 = U11 = a__U11 = a__U12 = a__isNat = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = a__and = |0| = isNat = U31 = U41 partial status: pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(and) = [] pi(mark) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(isNatKind(X)) -> a__isNatKind#(X) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: mark#(and(X1,X2)) -> mark#(X1) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(U22(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) p11: mark#(U12(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(U12(X1,X2)) -> mark#(X1) p4: mark#(U13(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U22(X)) -> mark#(X) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p11: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 6 a__and#_A(x1,x2) = x2 a__isNatKind_A(x1) = 0 isNatKind_A(x1) = 0 tt_A() = 0 mark#_A(x1) = x1 U12_A(x1,x2) = x1 + x2 + 3 U13_A(x1) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 1 U22_A(x1) = x1 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 s_A(x1) = x1 + 1 a__U11_A(x1,x2,x3) = x2 + x3 + 5 a__U12_A(x1,x2) = x1 + x2 + 3 a__isNat_A(x1) = x1 + 1 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x1 + x2 + 1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x2 a__U41_A(x1,x2,x3) = x2 + x3 + 7 a__plus_A(x1,x2) = x1 + x2 + 6 a__and_A(x1,x2) = x1 + x2 |0|_A() = 2 isNat_A(x1) = x1 + 1 U11_A(x1,x2,x3) = x2 + x3 + 5 U31_A(x1,x2) = x2 U41_A(x1,x2,x3) = x2 + x3 + 7 precedence: a__isNatKind# = plus = a__and# = a__isNatKind = isNatKind = tt = mark# = U12 = U13 = U21 = U22 = and = mark = s = a__U11 = a__U12 = a__isNat = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus = a__and = |0| = isNat = U11 = U31 = U41 partial status: pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(tt) = [] pi(mark#) = [] pi(U12) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(and) = [] pi(mark) = [] pi(s) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [] pi(U11) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(U13(X)) -> mark#(X) p4: mark#(U21(X1,X2)) -> mark#(X1) p5: mark#(U22(X)) -> mark#(X) p6: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p7: mark#(and(X1,X2)) -> mark#(X1) p8: mark#(isNatKind(X)) -> a__isNatKind#(X) p9: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p10: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(isNatKind(X)) -> a__isNatKind#(X) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: mark#(and(X1,X2)) -> mark#(X1) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(U22(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = 10 plus_A(x1,x2) = x1 + 13 a__and#_A(x1,x2) = x1 + x2 + 3 a__isNatKind_A(x1) = 7 isNatKind_A(x1) = 0 tt_A() = 7 mark#_A(x1) = x1 + 10 s_A(x1) = 11 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 7 U22_A(x1) = x1 U21_A(x1,x2) = x1 + 1 U13_A(x1) = x1 a__U11_A(x1,x2,x3) = 8 a__U12_A(x1,x2) = 8 a__isNat_A(x1) = 8 a__U13_A(x1) = x1 a__U21_A(x1,x2) = x1 + 1 a__U22_A(x1) = x1 a__U31_A(x1,x2) = x2 + 7 a__U41_A(x1,x2,x3) = 12 a__plus_A(x1,x2) = x1 + 13 a__and_A(x1,x2) = x1 + x2 |0|_A() = 9 isNat_A(x1) = 2 U11_A(x1,x2,x3) = 2 U12_A(x1,x2) = 6 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = 6 precedence: a__isNat > s = a__U31 = |0| = U31 > a__isNatKind# = a__and# = mark# = U11 > plus = a__isNatKind = isNatKind = tt = and = mark = U22 = U21 = U13 = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U41 = a__plus = a__and = isNat = U12 = U41 partial status: pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(and) = [] pi(mark) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [] pi(U11) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(isNatKind(X)) -> a__isNatKind#(X) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: mark#(and(X1,X2)) -> mark#(X1) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(U22(X)) -> mark#(X) p9: mark#(U13(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(U13(X)) -> mark#(X) p4: mark#(U22(X)) -> mark#(X) p5: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p6: mark#(and(X1,X2)) -> mark#(X1) p7: mark#(isNatKind(X)) -> a__isNatKind#(X) p8: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p9: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 12 a__and#_A(x1,x2) = x2 + 1 a__isNatKind_A(x1) = x1 + 2 isNatKind_A(x1) = x1 + 2 tt_A() = 0 mark#_A(x1) = x1 U13_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 + 1 mark_A(x1) = x1 s_A(x1) = x1 + 8 a__U11_A(x1,x2,x3) = x2 + x3 + 11 a__U12_A(x1,x2) = x1 + x2 + 6 a__isNat_A(x1) = x1 + 4 a__U13_A(x1) = x1 + 1 a__U21_A(x1,x2) = x2 + 6 a__U22_A(x1) = x1 + 1 a__U31_A(x1,x2) = x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 20 a__plus_A(x1,x2) = x1 + x2 + 12 a__and_A(x1,x2) = x1 + x2 + 1 |0|_A() = 3 isNat_A(x1) = x1 + 4 U11_A(x1,x2,x3) = x2 + x3 + 11 U12_A(x1,x2) = x1 + x2 + 6 U21_A(x1,x2) = x2 + 6 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 20 precedence: a__U11 = U11 > |0| > plus = a__U31 = a__U41 = a__plus = U31 = U41 > mark = s = a__U22 > a__and > a__and# = mark# = U22 = and > tt > a__U12 = a__isNat = a__U13 = U12 > a__U21 = isNat = U21 > a__isNatKind# = a__isNatKind = isNatKind > U13 partial status: pi(a__isNatKind#) = [1] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [1] pi(isNatKind) = [] pi(tt) = [] pi(mark#) = [1] pi(U13) = [] pi(U22) = [1] pi(and) = [] pi(mark) = [1] pi(s) = [] pi(a__U11) = [3] pi(a__U12) = [2] pi(a__isNat) = [1] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(isNat) = [1] pi(U11) = [3] pi(U12) = [2] pi(U21) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(U13(X)) -> mark#(X) p4: mark#(U22(X)) -> mark#(X) p5: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p6: mark#(and(X1,X2)) -> mark#(X1) p7: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p8: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p7, p8} {p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p2: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = x1 + 1 s_A(x1) = x1 + 2 plus_A(x1,x2) = x1 + x2 + 2 precedence: a__isNatKind# > s = plus partial status: pi(a__isNatKind#) = [1] pi(s) = [1] pi(plus) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNatKind#_A(x1) = x1 s_A(x1) = x1 + 1 precedence: a__isNatKind# = s partial status: pi(a__isNatKind#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(and(X1,X2)) -> mark#(X1) p3: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p4: mark#(U22(X)) -> mark#(X) p5: mark#(U13(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__and#_A(x1,x2) = x2 + 4 tt_A() = 0 mark#_A(x1) = x1 + 1 and_A(x1,x2) = x1 + x2 + 5 mark_A(x1) = x1 U22_A(x1) = x1 + 2 U13_A(x1) = x1 + 2 a__U11_A(x1,x2,x3) = x3 + 14 a__U12_A(x1,x2) = x2 + 13 a__isNat_A(x1) = x1 + 10 a__U13_A(x1) = x1 + 2 a__U21_A(x1,x2) = x2 + 13 a__U22_A(x1) = x1 + 2 a__U31_A(x1,x2) = x2 + 1 a__U41_A(x1,x2,x3) = x2 + x3 + 9 s_A(x1) = x1 + 4 a__plus_A(x1,x2) = x1 + x2 + 5 a__and_A(x1,x2) = x1 + x2 + 5 |0|_A() = 0 plus_A(x1,x2) = x1 + x2 + 5 a__isNatKind_A(x1) = x1 isNatKind_A(x1) = x1 isNat_A(x1) = x1 + 10 U11_A(x1,x2,x3) = x3 + 14 U12_A(x1,x2) = x2 + 13 U21_A(x1,x2) = x2 + 13 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 9 precedence: mark# > tt = mark = U22 = U13 = a__U12 = a__isNat = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = s = a__plus = |0| = plus = a__isNatKind = isNatKind = isNat = U12 = U21 = U31 = U41 > a__U11 > a__and > a__and# = and = U11 partial status: pi(a__and#) = [] pi(tt) = [] pi(mark#) = [1] pi(and) = [] pi(mark) = [1] pi(U22) = [] pi(U13) = [] pi(a__U11) = [] pi(a__U12) = [2] pi(a__isNat) = [1] pi(a__U13) = [] pi(a__U21) = [2] pi(a__U22) = [1] pi(a__U31) = [] pi(a__U41) = [] pi(s) = [] pi(a__plus) = [1, 2] pi(a__and) = [2] pi(|0|) = [] pi(plus) = [1, 2] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(isNat) = [] pi(U11) = [] pi(U12) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p3: mark#(U22(X)) -> mark#(X) p4: mark#(U13(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(U13(X)) -> mark#(X) p3: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 and_A(x1,x2) = x1 + x2 + 1 U13_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 precedence: mark# = and = U13 = U22 partial status: pi(mark#) = [1] pi(and) = [1, 2] pi(U13) = [1] pi(U22) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U13(X)) -> mark#(X) p2: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U13(X)) -> mark#(X) p2: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U13_A(x1) = x1 + 1 U22_A(x1) = x1 + 1 precedence: mark# = U13 = U22 partial status: pi(mark#) = [1] pi(U13) = [1] pi(U22) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U22(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U22_A(x1) = x1 + 1 precedence: mark# = U22 partial status: pi(mark#) = [1] pi(U22) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.