YES We show the termination of the TRS R: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N,|0|()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> U12#(isNat(activate(V2))) p2: U11#(tt(),V2) -> isNat#(activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: U31#(tt(),N) -> activate#(N) p5: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p6: U41#(tt(),M,N) -> isNat#(activate(N)) p7: U41#(tt(),M,N) -> activate#(N) p8: U41#(tt(),M,N) -> activate#(M) p9: U42#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p10: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: U42#(tt(),M,N) -> activate#(N) p12: U42#(tt(),M,N) -> activate#(M) p13: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p14: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p15: isNat#(n__plus(V1,V2)) -> activate#(V1) p16: isNat#(n__plus(V1,V2)) -> activate#(V2) p17: isNat#(n__s(V1)) -> U21#(isNat(activate(V1))) p18: isNat#(n__s(V1)) -> isNat#(activate(V1)) p19: isNat#(n__s(V1)) -> activate#(V1) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,s(M)) -> U41#(isNat(M),M,N) p23: plus#(N,s(M)) -> isNat#(M) p24: activate#(n__0()) -> |0|#() p25: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p26: activate#(n__plus(X1,X2)) -> activate#(X1) p27: activate#(n__plus(X1,X2)) -> activate#(X2) p28: activate#(n__s(X)) -> s#(activate(X)) p29: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p23, p25, p26, p27, p29} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p13: U11#(tt(),V2) -> activate#(V2) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> activate#(M) p16: U41#(tt(),M,N) -> activate#(N) p17: U41#(tt(),M,N) -> isNat#(activate(N)) p18: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p19: U42#(tt(),M,N) -> activate#(M) p20: U42#(tt(),M,N) -> activate#(N) p21: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p22: plus#(N,|0|()) -> isNat#(N) p23: plus#(N,|0|()) -> U31#(isNat(N),N) p24: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x1 + x2 + 1 tt_A() = 15 isNat#_A(x1) = x1 + 7 activate_A(x1) = x1 n__s_A(x1) = x1 + 8 activate#_A(x1) = x1 + 5 n__plus_A(x1,x2) = x1 + x2 + 6 plus#_A(x1,x2) = x1 + x2 + 10 s_A(x1) = x1 + 8 isNat_A(x1) = x1 + 2 U41#_A(x1,x2,x3) = x2 + x3 + 17 U42#_A(x1,x2,x3) = x2 + x3 + 16 |0|_A() = 16 U31#_A(x1,x2) = x2 + 17 U42_A(x1,x2,x3) = x2 + x3 + 14 plus_A(x1,x2) = x1 + x2 + 6 U12_A(x1) = x1 + 14 U31_A(x1,x2) = x2 + 17 U41_A(x1,x2,x3) = x2 + x3 + 14 U11_A(x1,x2) = x1 + x2 + 6 U21_A(x1) = x1 + 7 n__0_A() = 16 precedence: U31 > U41# > U42# > U11# = activate# > plus# > U31# > activate > plus > isNat# > n__plus > |0| > U41 > n__0 > tt = n__s = s = isNat = U42 = U12 = U11 > U21 partial status: pi(U11#) = [2] pi(tt) = [] pi(isNat#) = [1] pi(activate) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [3] pi(U42#) = [3] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [1, 2] pi(U12) = [] pi(U31) = [] pi(U41) = [3] pi(U11) = [] pi(U21) = [1] pi(n__0) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p13: U11#(tt(),V2) -> activate#(V2) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> activate#(N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p18: U42#(tt(),M,N) -> activate#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,|0|()) -> U31#(isNat(N),N) p23: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__s(X)) -> activate#(X) p10: plus#(N,|0|()) -> isNat#(N) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> activate#(V1) p13: isNat#(n__plus(V1,V2)) -> activate#(V2) p14: isNat#(n__s(V1)) -> isNat#(activate(V1)) p15: isNat#(n__s(V1)) -> activate#(V1) p16: plus#(N,s(M)) -> U41#(isNat(M),M,N) p17: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p18: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,s(M)) -> isNat#(M) p20: U42#(tt(),M,N) -> activate#(N) p21: U42#(tt(),M,N) -> activate#(M) p22: U41#(tt(),M,N) -> isNat#(activate(N)) p23: U41#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x1 + x2 + 6 tt_A() = 1 isNat#_A(x1) = x1 + 6 activate_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 11 isNat_A(x1) = 4 activate#_A(x1) = x1 plus#_A(x1,x2) = x1 + x2 + 6 |0|_A() = 0 U31#_A(x1,x2) = x1 + x2 + 1 n__s_A(x1) = x1 s_A(x1) = x1 U41#_A(x1,x2,x3) = x2 + x3 + 6 U42#_A(x1,x2,x3) = x2 + x3 + 6 U42_A(x1,x2,x3) = x2 + x3 + 11 plus_A(x1,x2) = x1 + x2 + 11 U12_A(x1) = 2 U31_A(x1,x2) = x1 + x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 11 U11_A(x1,x2) = 3 U21_A(x1) = 2 n__0_A() = 0 precedence: U11 > n__plus = plus# = U41# = U42# = plus > U41 > n__s = s = U42 > activate = |0| = n__0 > isNat = U21 > U11# = tt = isNat# = activate# = U31# = U12 = U31 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__plus) = [] pi(isNat) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(U31#) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [] pi(U42#) = [] pi(U42) = [2] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: U31#(tt(),N) -> activate#(N) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: plus#(N,|0|()) -> isNat#(N) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U41#(isNat(M),M,N) p16: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p17: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,s(M)) -> isNat#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: U42#(tt(),M,N) -> activate#(M) p21: U41#(tt(),M,N) -> isNat#(activate(N)) p22: U41#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p13: U11#(tt(),V2) -> activate#(V2) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> activate#(N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p18: U42#(tt(),M,N) -> activate#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p21: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 11 tt_A() = 6 isNat#_A(x1) = x1 + 11 activate_A(x1) = x1 n__s_A(x1) = x1 + 5 activate#_A(x1) = x1 + 11 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 10 s_A(x1) = x1 + 5 isNat_A(x1) = 9 U41#_A(x1,x2,x3) = x1 + x2 + x3 + 5 U42#_A(x1,x2,x3) = x2 + x3 + 11 |0|_A() = 10 U42_A(x1,x2,x3) = x2 + x3 + 5 plus_A(x1,x2) = x1 + x2 U12_A(x1) = 7 U31_A(x1,x2) = x2 + 10 U41_A(x1,x2,x3) = x2 + x3 + 5 U11_A(x1,x2) = 8 U21_A(x1) = 9 n__0_A() = 10 precedence: activate = plus = U31 > isNat > |0| > U11# = isNat# = activate# = plus# = U41# = U42# = U12 = U11 = U21 > tt > n__s = n__plus = s = U42 = U41 = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(U42#) = [] pi(|0|) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p20 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p13: U11#(tt(),V2) -> activate#(V2) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> activate#(N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p18: U42#(tt(),M,N) -> activate#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: activate#(n__plus(X1,X2)) -> activate#(X1) p9: activate#(n__plus(X1,X2)) -> activate#(X2) p10: activate#(n__s(X)) -> activate#(X) p11: isNat#(n__plus(V1,V2)) -> activate#(V2) p12: isNat#(n__s(V1)) -> isNat#(activate(V1)) p13: isNat#(n__s(V1)) -> activate#(V1) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p16: U42#(tt(),M,N) -> activate#(N) p17: U42#(tt(),M,N) -> activate#(M) p18: U41#(tt(),M,N) -> isNat#(activate(N)) p19: U41#(tt(),M,N) -> activate#(N) p20: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 6 tt_A() = 4 isNat#_A(x1) = x1 + 5 activate_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 3 isNat_A(x1) = 9 activate#_A(x1) = x1 plus#_A(x1,x2) = x1 + x2 + 2 |0|_A() = 10 n__s_A(x1) = x1 + 10 s_A(x1) = x1 + 10 U41#_A(x1,x2,x3) = x2 + x3 + 11 U42#_A(x1,x2,x3) = x2 + x3 + 5 U42_A(x1,x2,x3) = x2 + x3 + 13 plus_A(x1,x2) = x1 + x2 + 3 U12_A(x1) = 5 U31_A(x1,x2) = x1 + x2 + 2 U41_A(x1,x2,x3) = x2 + x3 + 13 U11_A(x1,x2) = 6 U21_A(x1) = x1 n__0_A() = 10 precedence: n__plus = U41# = U42# = plus > U31 = U41 > isNat = n__s = s = U42 > tt = activate = |0| = U12 = U11 = U21 = n__0 > U11# > isNat# = activate# = plus# partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__plus) = [] pi(isNat) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [3] pi(U42#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__s(X)) -> activate#(X) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p15: U42#(tt(),M,N) -> activate#(N) p16: U42#(tt(),M,N) -> activate#(M) p17: U41#(tt(),M,N) -> isNat#(activate(N)) p18: U41#(tt(),M,N) -> activate#(N) p19: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(N) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p17: U42#(tt(),M,N) -> activate#(M) p18: U42#(tt(),M,N) -> activate#(N) p19: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 6 n__plus_A(x1,x2) = x1 + x2 + 6 U11#_A(x1,x2) = x2 + 2 isNat_A(x1) = 7 activate_A(x1) = x1 tt_A() = 3 activate#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 13 plus#_A(x1,x2) = x1 + x2 + 5 s_A(x1) = x1 + 13 U41#_A(x1,x2,x3) = x1 + x2 + x3 + 5 U42#_A(x1,x2,x3) = x2 + x3 + 2 |0|_A() = 8 U42_A(x1,x2,x3) = x2 + x3 + 19 plus_A(x1,x2) = x1 + x2 + 6 U12_A(x1) = 4 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 19 U11_A(x1,x2) = 5 U21_A(x1) = 4 n__0_A() = 8 precedence: activate > U41# = U42# > n__plus = plus# = plus = U21 > U11# > activate# = |0| = U31 = n__0 > isNat# > U12 = U11 > U42 = U41 > isNat = tt = n__s = s partial status: pi(isNat#) = [1] pi(n__plus) = [] pi(U11#) = [] pi(isNat) = [] pi(activate) = [1] pi(tt) = [] pi(activate#) = [1] pi(n__s) = [1] pi(plus#) = [] pi(s) = [1] pi(U41#) = [3] pi(U42#) = [] pi(|0|) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(N) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p17: U42#(tt(),M,N) -> activate#(M) p18: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__s(X)) -> activate#(X) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p15: U42#(tt(),M,N) -> activate#(M) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> activate#(N) p18: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 7 n__plus_A(x1,x2) = x1 + x2 U11#_A(x1,x2) = x1 + x2 + 3 isNat_A(x1) = x1 + 1 activate_A(x1) = x1 tt_A() = 5 activate#_A(x1) = x1 + 7 plus#_A(x1,x2) = x1 + x2 + 7 |0|_A() = 6 n__s_A(x1) = x1 s_A(x1) = x1 U41#_A(x1,x2,x3) = x2 + x3 + 7 U42#_A(x1,x2,x3) = x1 + x2 + 3 U42_A(x1,x2,x3) = x2 + x3 plus_A(x1,x2) = x1 + x2 U12_A(x1) = x1 U31_A(x1,x2) = x2 + 5 U41_A(x1,x2,x3) = x2 + x3 U11_A(x1,x2) = x1 + x2 U21_A(x1) = x1 n__0_A() = 6 precedence: n__plus = activate = |0| = n__s = s = U42 = plus = U31 = U41 = n__0 > isNat# = U11# = isNat = tt = activate# = plus# = U41# = U42# = U12 = U11 = U21 partial status: pi(isNat#) = [] pi(n__plus) = [] pi(U11#) = [] pi(isNat) = [1] pi(activate) = [] pi(tt) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [] pi(U42#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: plus#(N,s(M)) -> U41#(isNat(M),M,N) p13: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p14: U42#(tt(),M,N) -> activate#(M) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> activate#(N) p17: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(N) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p17: U42#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 7 U11#_A(x1,x2) = x2 + 5 isNat_A(x1) = 6 activate_A(x1) = x1 tt_A() = 3 activate#_A(x1) = x1 + 4 n__s_A(x1) = x1 + 11 plus#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 + 11 U41#_A(x1,x2,x3) = x1 + x2 + x3 + 4 U42#_A(x1,x2,x3) = x2 + 5 U42_A(x1,x2,x3) = x2 + x3 + 18 plus_A(x1,x2) = x1 + x2 + 7 U12_A(x1) = 4 U31_A(x1,x2) = x2 + 1 U41_A(x1,x2,x3) = x2 + x3 + 18 U11_A(x1,x2) = 5 U21_A(x1) = 5 |0|_A() = 2 n__0_A() = 2 precedence: n__plus = plus > activate > tt > isNat = activate# = plus# = U41# = U42# > U31 > U41 > U12 = U11 = |0| = n__0 > U21 > isNat# = U11# = n__s = s = U42 partial status: pi(isNat#) = [] pi(n__plus) = [] pi(U11#) = [] pi(isNat) = [] pi(activate) = [1] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(plus#) = [2] pi(s) = [] pi(U41#) = [1, 3] pi(U42#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [2] pi(U41) = [2] pi(U11) = [] pi(U21) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(N) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U42#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p2: U11#(tt(),V2) -> activate#(V2) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> U41#(isNat(M),M,N) p5: U41#(tt(),M,N) -> isNat#(activate(N)) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: activate#(n__plus(X1,X2)) -> activate#(X1) p9: activate#(n__plus(X1,X2)) -> activate#(X2) p10: activate#(n__s(X)) -> activate#(X) p11: isNat#(n__plus(V1,V2)) -> activate#(V2) p12: isNat#(n__s(V1)) -> isNat#(activate(V1)) p13: isNat#(n__s(V1)) -> activate#(V1) p14: U41#(tt(),M,N) -> activate#(N) p15: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 5 n__plus_A(x1,x2) = x1 + x2 + 4 U11#_A(x1,x2) = x1 + x2 isNat_A(x1) = 4 activate_A(x1) = x1 tt_A() = 2 activate#_A(x1) = x1 + 1 plus#_A(x1,x2) = x1 + x2 + 3 s_A(x1) = x1 + 6 U41#_A(x1,x2,x3) = x1 + x3 + 4 n__s_A(x1) = x1 + 6 U42_A(x1,x2,x3) = x2 + x3 + 10 plus_A(x1,x2) = x1 + x2 + 4 U12_A(x1) = x1 U31_A(x1,x2) = x2 + 4 U41_A(x1,x2,x3) = x2 + x3 + 10 U11_A(x1,x2) = 4 U21_A(x1) = 3 |0|_A() = 5 n__0_A() = 5 precedence: plus# > n__plus = isNat = U41# = plus = U41 > isNat# = U11 > U11# > activate# > s = n__s = U42 > U12 > |0| = n__0 > activate > tt = U31 = U21 partial status: pi(isNat#) = [1] pi(n__plus) = [] pi(U11#) = [] pi(isNat) = [] pi(activate) = [1] pi(tt) = [] pi(activate#) = [1] pi(plus#) = [1, 2] pi(s) = [] pi(U41#) = [] pi(n__s) = [] pi(U42) = [3] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> activate#(V2) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U41#(isNat(M),M,N) p4: U41#(tt(),M,N) -> isNat#(activate(N)) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__s(X)) -> activate#(X) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: U41#(tt(),M,N) -> activate#(N) p14: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__s(X)) -> activate#(X) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> activate#(N) p13: U41#(tt(),M,N) -> isNat#(activate(N)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 5 plus#_A(x1,x2) = x1 + x2 + 1 activate_A(x1) = x1 s_A(x1) = x1 + 5 isNat#_A(x1) = x1 + 3 n__s_A(x1) = x1 + 5 U41#_A(x1,x2,x3) = x3 + 4 isNat_A(x1) = 4 tt_A() = 2 U42_A(x1,x2,x3) = x2 + x3 + 10 plus_A(x1,x2) = x1 + x2 + 5 U12_A(x1) = 3 U31_A(x1,x2) = x2 + 6 U41_A(x1,x2,x3) = x2 + x3 + 10 U11_A(x1,x2) = 3 U21_A(x1) = 3 |0|_A() = 1 n__0_A() = 1 precedence: plus# = U41# = isNat > activate# > U12 = U11 > tt = U21 > n__plus = plus > activate > isNat# > U41 = |0| = n__0 > U42 > s > n__s = U31 partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [2] pi(activate) = [1] pi(s) = [] pi(isNat#) = [1] pi(n__s) = [1] pi(U41#) = [] pi(isNat) = [] pi(tt) = [] pi(U42) = [3] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> isNat#(M) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> U41#(isNat(M),M,N) p11: U41#(tt(),M,N) -> activate#(N) p12: U41#(tt(),M,N) -> isNat#(activate(N)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p6, p9} {p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p2: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 4 activate_A(x1) = x1 n__s_A(x1) = x1 + 3 U12_A(x1) = 2 tt_A() = 1 U11_A(x1,x2) = 3 isNat_A(x1) = x1 + 2 U21_A(x1) = x1 U42_A(x1,x2,x3) = x2 + x3 + 7 s_A(x1) = x1 + 3 plus_A(x1,x2) = x1 + x2 + 4 U31_A(x1,x2) = x2 + 4 U41_A(x1,x2,x3) = x2 + x3 + 7 n__0_A() = 3 |0|_A() = 3 precedence: isNat# = U11 = isNat > activate = n__s = U12 = tt = U21 = U42 = s = plus = U31 = U41 = n__0 = |0| > n__plus partial status: pi(isNat#) = [1] pi(n__plus) = [2] pi(activate) = [1] pi(n__s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [1] pi(U21) = [1] pi(U42) = [] pi(s) = [] pi(plus) = [1, 2] pi(U31) = [2] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + 10 activate_A(x1) = x1 + 2 U12_A(x1) = 5 tt_A() = 4 U11_A(x1,x2) = x1 + 2 isNat_A(x1) = x1 + 1 U21_A(x1) = 5 U42_A(x1,x2,x3) = 8 s_A(x1) = 7 plus_A(x1,x2) = x1 + 10 U31_A(x1,x2) = x2 + 3 U41_A(x1,x2,x3) = 9 n__0_A() = 5 n__s_A(x1) = 6 |0|_A() = 6 precedence: tt = U21 = U42 = s = n__s > isNat# > n__plus = activate = U11 = plus = U31 = U41 > isNat > U12 = n__0 = |0| partial status: pi(isNat#) = [1] pi(n__plus) = [] pi(activate) = [1] pi(U12) = [] pi(tt) = [] pi(U11) = [1] pi(isNat) = [1] pi(U21) = [] pi(U42) = [] pi(s) = [] pi(plus) = [1] pi(U31) = [2] pi(U41) = [] pi(n__0) = [] pi(n__s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 1 precedence: activate# = n__s = n__plus partial status: pi(activate#) = [] pi(n__s) = [1] pi(n__plus) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) p2: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) p2: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 2 precedence: activate# = n__plus partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 1 precedence: activate# = n__plus partial status: pi(activate#) = [] pi(n__plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.