YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p20: activate#(n__plus(X1,X2)) -> activate#(X1) p21: activate#(n__plus(X1,X2)) -> activate#(X2) p22: activate#(n__isNat(X)) -> isNat#(X) p23: activate#(n__s(X)) -> s#(activate(X)) p24: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20, p21, p22, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p20: plus#(N,|0|()) -> isNat#(N) p21: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 1 tt_A() = 1 activate#_A(x1) = x1 n__s_A(x1) = x1 n__isNat_A(x1) = x1 + 2 isNat#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 5 plus#_A(x1,x2) = x1 + x2 + 4 activate_A(x1) = x1 s_A(x1) = x1 and#_A(x1,x2) = x2 + 1 isNat_A(x1) = x1 + 2 U21#_A(x1,x2,x3) = x2 + x3 + 4 and_A(x1,x2) = x2 + 1 |0|_A() = 0 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 5 plus_A(x1,x2) = x1 + x2 + 5 n__0_A() = 0 precedence: isNat# > plus# = U21# > U11# > and > |0| = n__0 > tt = n__isNat = isNat > n__plus = plus > U21 > n__s = s > activate = U11 > activate# = and# partial status: pi(U11#) = [2] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(and#) = [2] pi(isNat) = [] pi(U21#) = [] pi(and) = [2] pi(|0|) = [] pi(U11) = [] pi(U21) = [3] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> isNat#(N) p20: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: activate#(n__s(X)) -> activate#(X) p13: isNat#(n__plus(V1,V2)) -> activate#(V2) p14: isNat#(n__s(V1)) -> isNat#(activate(V1)) p15: isNat#(n__s(V1)) -> activate#(V1) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p19: plus#(N,s(M)) -> isNat#(M) p20: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 2 tt_A() = 3 activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 7 plus#_A(x1,x2) = x1 + x2 + 2 activate_A(x1) = x1 |0|_A() = 0 isNat_A(x1) = x1 + 4 isNat#_A(x1) = x1 + 1 and#_A(x1,x2) = x2 + 2 n__isNat_A(x1) = x1 + 4 n__s_A(x1) = x1 + 9 s_A(x1) = x1 + 9 U21#_A(x1,x2,x3) = x2 + x3 + 3 and_A(x1,x2) = x1 + x2 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 16 plus_A(x1,x2) = x1 + x2 + 7 n__0_A() = 0 precedence: activate > U11# = activate# = plus# = |0| = and# = U21# > tt = isNat# > isNat = n__isNat = and > plus > U21 > s = n__0 > n__plus = n__s > U11 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat) = [] pi(isNat#) = [1] pi(and#) = [] pi(n__isNat) = [] pi(n__s) = [1] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [2] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: activate#(n__s(X)) -> activate#(X) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p18: plus#(N,s(M)) -> isNat#(M) p19: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 5 tt_A() = 2 activate#_A(x1) = x1 + 4 n__s_A(x1) = x1 + 2 n__isNat_A(x1) = x1 isNat#_A(x1) = x1 + 4 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 3 activate_A(x1) = x1 s_A(x1) = x1 + 2 and#_A(x1,x2) = x1 + x2 + 3 isNat_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 5 and_A(x1,x2) = x1 + x2 |0|_A() = 3 U11_A(x1,x2) = x2 + 2 U21_A(x1,x2,x3) = x2 + x3 + 2 plus_A(x1,x2) = x1 + x2 n__0_A() = 3 precedence: U11 > |0| = n__0 > activate# = isNat# > n__plus = and = U21 = plus > n__isNat = activate = isNat > tt > s > n__s > U11# = plus# = and# = U21# partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [1] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(and#) = [] pi(isNat) = [1] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p5: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> activate#(V1) p13: isNat#(n__plus(V1,V2)) -> activate#(V2) p14: isNat#(n__s(V1)) -> isNat#(activate(V1)) p15: isNat#(n__s(V1)) -> activate#(V1) p16: plus#(N,s(M)) -> isNat#(M) p17: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 5 n__s_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 5 activate_A(x1) = x1 s_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 5 and_A(x1,x2) = x2 isNat_A(x1) = x1 + 1 n__isNat_A(x1) = x1 + 1 tt_A() = 4 and#_A(x1,x2) = x1 + x2 + 2 isNat#_A(x1) = x1 + 5 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 plus_A(x1,x2) = x1 + x2 |0|_A() = 5 n__0_A() = 5 precedence: activate# = n__s = n__plus = plus# = activate = s = U21# = and = isNat = n__isNat = tt = and# = isNat# = U11 = U21 = plus = |0| = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(and#) = [] pi(isNat#) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p5: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> activate#(V1) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> activate#(M) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 5 plus#_A(x1,x2) = x2 + 4 activate_A(x1) = x1 s_A(x1) = x1 isNat#_A(x1) = x1 + 4 and#_A(x1,x2) = x2 + 1 isNat_A(x1) = 2 n__isNat_A(x1) = 2 tt_A() = 1 U21#_A(x1,x2,x3) = x2 + 4 and_A(x1,x2) = x2 U11_A(x1,x2) = x2 + 4 U21_A(x1,x2,x3) = x2 + x3 + 5 plus_A(x1,x2) = x1 + x2 + 5 |0|_A() = 3 n__0_A() = 3 precedence: n__s = n__plus = activate = s = isNat = n__isNat = tt = and = U21 = plus > activate# = plus# = isNat# = and# = U21# = U11 = |0| = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> activate#(V1) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p5: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: plus#(N,s(M)) -> isNat#(M) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 6 n__s_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 6 activate_A(x1) = x1 s_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 6 and_A(x1,x2) = x2 isNat_A(x1) = x1 + 2 n__isNat_A(x1) = x1 + 2 tt_A() = 7 and#_A(x1,x2) = x1 + x2 + 1 isNat#_A(x1) = x1 + 6 U11_A(x1,x2) = x2 + 5 U21_A(x1,x2,x3) = x2 + x3 plus_A(x1,x2) = x1 + x2 |0|_A() = 6 n__0_A() = 6 precedence: activate# = n__s = n__plus = plus# = activate = s = U21# = and = isNat = n__isNat = tt = and# = isNat# = U11 = U21 = plus = |0| = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(and#) = [] pi(isNat#) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p5: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> activate#(V2) p12: isNat#(n__s(V1)) -> isNat#(activate(V1)) p13: isNat#(n__s(V1)) -> activate#(V1) p14: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> activate#(V1) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> activate#(M) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 4 n__plus_A(x1,x2) = x1 + x2 + 3 plus#_A(x1,x2) = x2 + 2 activate_A(x1) = x1 s_A(x1) = x1 + 4 isNat#_A(x1) = x1 + 1 U21#_A(x1,x2,x3) = x2 + 3 and_A(x1,x2) = x2 isNat_A(x1) = 2 n__isNat_A(x1) = 2 tt_A() = 1 U11_A(x1,x2) = x2 + 4 U21_A(x1,x2,x3) = x2 + x3 + 7 plus_A(x1,x2) = x1 + x2 + 3 |0|_A() = 3 n__0_A() = 3 precedence: activate = and = isNat = n__isNat = tt = |0| = n__0 > isNat# > U21# > n__plus = U21 = plus > activate# = n__s = plus# = s > U11 partial status: pi(activate#) = [1] pi(n__s) = [1] pi(n__plus) = [2] pi(plus#) = [2] pi(activate) = [] pi(s) = [1] pi(isNat#) = [1] pi(U21#) = [2] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [2] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> activate#(V1) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p11: U21#(tt(),M,N) -> activate#(M) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: activate#(n__plus(X1,X2)) -> activate#(X1) p9: activate#(n__plus(X1,X2)) -> activate#(X2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 5 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x2 + 1 activate_A(x1) = x1 s_A(x1) = x1 + 5 U21#_A(x1,x2,x3) = x2 + 3 and_A(x1,x2) = x2 isNat_A(x1) = 4 n__isNat_A(x1) = 4 tt_A() = 3 isNat#_A(x1) = x1 + 3 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 5 plus_A(x1,x2) = x1 + x2 |0|_A() = 5 n__0_A() = 5 precedence: n__plus = activate = and = isNat = tt = isNat# = plus = |0| = n__0 > activate# > n__s = plus# = s = U21# = n__isNat = U21 > U11 partial status: pi(activate#) = [1] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(isNat#) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> activate#(M) p11: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x2 activate_A(x1) = x1 s_A(x1) = x1 + 3 isNat#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 3 U21#_A(x1,x2,x3) = x2 + 2 and_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 n__isNat_A(x1) = 0 tt_A() = 0 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 3 plus_A(x1,x2) = x1 + x2 |0|_A() = 2 n__0_A() = 2 precedence: activate# = n__plus = plus# = activate = s = isNat# = n__s = U21# = and = isNat = n__isNat = tt = U11 = U21 = plus = |0| = n__0 partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> activate#(M) p10: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: isNat#(n__s(V1)) -> activate#(V1) p10: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 4 n__plus_A(x1,x2) = x1 + x2 + 5 plus#_A(x1,x2) = x1 + x2 + 2 activate_A(x1) = x1 s_A(x1) = x1 + 10 U21#_A(x1,x2,x3) = x2 + x3 + 11 and_A(x1,x2) = x2 + 5 isNat_A(x1) = x1 + 4 n__isNat_A(x1) = x1 + 4 tt_A() = 3 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 10 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 15 plus_A(x1,x2) = x1 + x2 + 5 |0|_A() = 0 n__0_A() = 0 precedence: activate = plus > |0| > n__0 > U21 > s > n__s > isNat > n__plus = and = n__isNat > U11 > tt > activate# = U21# = isNat# > plus# partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [2] pi(activate) = [] pi(s) = [] pi(U21#) = [2, 3] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(isNat#) = [1] pi(n__s) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) p9: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 12 plus#_A(x1,x2) = x2 + 2 activate_A(x1) = x1 s_A(x1) = x1 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + 2 and_A(x1,x2) = x1 + x2 + 1 isNat_A(x1) = x1 + 5 n__isNat_A(x1) = x1 + 5 tt_A() = 3 U11_A(x1,x2) = x2 + 5 U21_A(x1,x2,x3) = x2 + x3 + 12 plus_A(x1,x2) = x1 + x2 + 12 |0|_A() = 4 n__0_A() = 4 precedence: activate# > plus# = U21# = isNat = n__isNat > isNat# > activate = and > tt > n__plus = plus > U21 > |0| = n__0 > s = n__s = U11 partial status: pi(activate#) = [1] pi(n__plus) = [2] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(isNat#) = [1] pi(n__s) = [] pi(U21#) = [] pi(and) = [2] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [3] pi(plus) = [2] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> isNat#(M) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p8: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 8 n__plus_A(x1,x2) = x1 + x2 + 8 plus#_A(x1,x2) = x2 activate_A(x1) = x1 s_A(x1) = x1 + 2 U21#_A(x1,x2,x3) = x2 and_A(x1,x2) = x1 + x2 + 1 isNat_A(x1) = x1 + 3 n__isNat_A(x1) = x1 + 3 tt_A() = 1 isNat#_A(x1) = x1 + 1 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 10 plus_A(x1,x2) = x1 + x2 + 8 |0|_A() = 0 n__0_A() = 0 n__s_A(x1) = x1 + 2 precedence: U21# = U11 > n__plus = plus > and > activate > |0| > n__0 > s = isNat = n__isNat = tt = U21 = n__s > activate# = plus# = isNat# partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(U21#) = [2] pi(and) = [2] pi(isNat) = [1] pi(n__isNat) = [] pi(tt) = [] pi(isNat#) = [1] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] pi(n__s) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> activate#(X2) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p6, p7} {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + 10 activate_A(x1) = x1 + 4 U11_A(x1,x2) = x2 + 8 tt_A() = 5 U21_A(x1,x2,x3) = 9 s_A(x1) = 8 plus_A(x1,x2) = x1 + 10 and_A(x1,x2) = x2 + 4 isNat_A(x1) = 6 n__0_A() = 4 n__isNat_A(x1) = 2 n__s_A(x1) = 7 |0|_A() = 7 precedence: activate = U11 = tt = and = isNat > isNat# = U21 = s = plus = n__0 = n__isNat > n__plus = n__s = |0| partial status: pi(isNat#) = [1] pi(n__plus) = [1] pi(activate) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [1] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(n__s) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X2) p2: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 2 precedence: activate# = n__plus partial status: pi(activate#) = [] pi(n__plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 1 precedence: activate# = n__plus partial status: pi(activate#) = [] pi(n__plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p2: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: plus#_A(x1,x2) = x2 + 2 s_A(x1) = x1 + 5 U21#_A(x1,x2,x3) = x1 + x2 + 2 and_A(x1,x2) = x2 isNat_A(x1) = 2 n__isNat_A(x1) = 2 tt_A() = 1 activate_A(x1) = x1 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 8 plus_A(x1,x2) = x1 + x2 + 3 |0|_A() = 3 n__0_A() = 3 n__plus_A(x1,x2) = x1 + x2 + 3 n__s_A(x1) = x1 + 5 precedence: and = isNat = activate > U11 > plus > U21 > s = U21# > plus# = n__isNat > |0| = n__0 = n__plus = n__s > tt partial status: pi(plus#) = [2] pi(s) = [1] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(activate) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] pi(n__plus) = [2] pi(n__s) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)