YES We show the termination of the TRS R: a__U11(tt(),N) -> mark(N) a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) a__isNat(s(V1)) -> a__isNat(V1) a__plus(N,|0|()) -> a__U11(a__isNat(N),N) a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) mark(U11(X1,X2)) -> a__U11(mark(X1),X2) mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(|0|()) -> |0|() a__U11(X1,X2) -> U11(X1,X2) a__U21(X1,X2,X3) -> U21(X1,X2,X3) a__plus(X1,X2) -> plus(X1,X2) a__and(X1,X2) -> and(X1,X2) a__isNat(X) -> isNat(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),N) -> mark#(N) p2: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p3: a__U21#(tt(),M,N) -> mark#(N) p4: a__U21#(tt(),M,N) -> mark#(M) p5: a__and#(tt(),X) -> mark#(X) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p8: a__isNat#(s(V1)) -> a__isNat#(V1) p9: a__plus#(N,|0|()) -> a__U11#(a__isNat(N),N) p10: a__plus#(N,|0|()) -> a__isNat#(N) p11: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p12: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p13: a__plus#(N,s(M)) -> a__isNat#(M) p14: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p15: mark#(U11(X1,X2)) -> mark#(X1) p16: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p17: mark#(U21(X1,X2,X3)) -> mark#(X1) p18: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p19: mark#(plus(X1,X2)) -> mark#(X1) p20: mark#(plus(X1,X2)) -> mark#(X2) p21: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p22: mark#(and(X1,X2)) -> mark#(X1) p23: mark#(isNat(X)) -> a__isNat#(X) p24: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),N) -> mark#(N) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p13: a__plus#(N,s(M)) -> a__isNat#(M) p14: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p15: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p16: a__U21#(tt(),M,N) -> mark#(M) p17: mark#(U21(X1,X2,X3)) -> mark#(X1) p18: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p19: a__U21#(tt(),M,N) -> mark#(N) p20: mark#(U11(X1,X2)) -> mark#(X1) p21: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p22: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p23: a__plus#(N,|0|()) -> a__isNat#(N) p24: a__plus#(N,|0|()) -> a__U11#(a__isNat(N),N) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2) = x2 + 5 tt_A() = 0 mark#_A(x1) = x1 + 3 s_A(x1) = x1 + 2 isNat_A(x1) = 0 a__isNat#_A(x1) = 3 plus_A(x1,x2) = x1 + x2 + 4 a__and#_A(x1,x2) = x2 + 3 a__isNat_A(x1) = 0 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 2 a__U21#_A(x1,x2,x3) = x2 + x3 + 3 a__and_A(x1,x2) = x1 + x2 U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 U11_A(x1,x2) = x1 + x2 + 6 |0|_A() = 4 a__U11_A(x1,x2) = x1 + x2 + 6 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 4 precedence: isNat = a__isNat = mark = a__and = U11 = a__U11 > plus = a__plus > and > a__U21# > |0| > a__U11# = a__plus# > tt = s = a__U21 > U21 > mark# = a__isNat# = a__and# partial status: pi(a__U11#) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [1] pi(a__U21#) = [] pi(a__and) = [] pi(U21) = [3] pi(U11) = [] pi(|0|) = [] pi(a__U11) = [] pi(a__U21) = [2] pi(a__plus) = [] The next rules are strictly ordered: p21 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),N) -> mark#(N) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p13: a__plus#(N,s(M)) -> a__isNat#(M) p14: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p15: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p16: a__U21#(tt(),M,N) -> mark#(M) p17: mark#(U21(X1,X2,X3)) -> mark#(X1) p18: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p19: a__U21#(tt(),M,N) -> mark#(N) p20: mark#(U11(X1,X2)) -> mark#(X1) p21: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p22: a__plus#(N,|0|()) -> a__isNat#(N) p23: a__plus#(N,|0|()) -> a__U11#(a__isNat(N),N) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),N) -> mark#(N) p2: mark#(U11(X1,X2)) -> mark#(X1) p3: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p4: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p5: a__plus#(N,|0|()) -> a__U11#(a__isNat(N),N) p6: a__plus#(N,|0|()) -> a__isNat#(N) p7: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(U21(X1,X2,X3)) -> mark#(X1) p10: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p11: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p12: a__U21#(tt(),M,N) -> mark#(N) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> mark#(X2) p15: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(isNat(X)) -> a__isNat#(X) p18: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p19: a__isNat#(s(V1)) -> a__isNat#(V1) p20: mark#(s(X)) -> mark#(X) p21: a__U21#(tt(),M,N) -> mark#(M) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p23: a__plus#(N,s(M)) -> a__isNat#(M) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__U11#_A(x1,x2) = x2 + 1 tt_A() = 0 mark#_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 3 U21_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__U21#_A(x1,x2,x3) = x2 + x3 + 3 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 2 |0|_A() = 2 a__isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 3 a__and#_A(x1,x2) = x1 + x2 isNat_A(x1) = 0 s_A(x1) = x1 + 2 a__and_A(x1,x2) = x1 + x2 and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2) = x1 + x2 + 3 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 5 a__plus_A(x1,x2) = x1 + x2 + 3 precedence: mark = a__isNat = a__and = a__U11 > |0| = isNat > U11 > plus = a__U21 = a__plus > U21 > and > s > tt > a__U11# = mark# = a__U21# = a__plus# = a__isNat# = a__and# partial status: pi(a__U11#) = [] pi(tt) = [] pi(mark#) = [] pi(U11) = [] pi(U21) = [2] pi(a__U21#) = [] pi(mark) = [] pi(a__plus#) = [] pi(|0|) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and#) = [] pi(isNat) = [] pi(s) = [] pi(a__and) = [] pi(and) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,|0|()) -> a__U11#(a__isNat(N),N) p5: a__plus#(N,|0|()) -> a__isNat#(N) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(U21(X1,X2,X3)) -> mark#(X1) p9: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p10: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p11: a__U21#(tt(),M,N) -> mark#(N) p12: mark#(plus(X1,X2)) -> mark#(X1) p13: mark#(plus(X1,X2)) -> mark#(X2) p14: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p15: mark#(and(X1,X2)) -> mark#(X1) p16: mark#(isNat(X)) -> a__isNat#(X) p17: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p18: a__isNat#(s(V1)) -> a__isNat#(V1) p19: mark#(s(X)) -> mark#(X) p20: a__U21#(tt(),M,N) -> mark#(M) p21: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p22: a__plus#(N,s(M)) -> a__isNat#(M) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p13: a__plus#(N,s(M)) -> a__isNat#(M) p14: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p15: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p16: a__U21#(tt(),M,N) -> mark#(M) p17: mark#(U21(X1,X2,X3)) -> mark#(X1) p18: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p19: a__U21#(tt(),M,N) -> mark#(N) p20: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p21: a__plus#(N,|0|()) -> a__isNat#(N) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 + 1 U11_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 isNat_A(x1) = 0 a__isNat#_A(x1) = 1 plus_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x2 + 1 a__isNat_A(x1) = 0 tt_A() = 0 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 1 a__U21#_A(x1,x2,x3) = x2 + x3 + 1 a__and_A(x1,x2) = x1 + x2 U21_A(x1,x2,x3) = x1 + x2 + x3 |0|_A() = 2 a__U11_A(x1,x2) = x1 + x2 + 2 a__U21_A(x1,x2,x3) = x1 + x2 + x3 a__plus_A(x1,x2) = x1 + x2 precedence: mark# = isNat = a__isNat# = a__and# = a__isNat = and = mark = a__plus# = a__U21# = a__and = a__U11 = a__plus > |0| > tt > plus > U21 = a__U21 > U11 = s partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U21) = [] pi(|0|) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] The next rules are strictly ordered: p21 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p13: a__plus#(N,s(M)) -> a__isNat#(M) p14: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p15: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p16: a__U21#(tt(),M,N) -> mark#(M) p17: mark#(U21(X1,X2,X3)) -> mark#(X1) p18: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p19: a__U21#(tt(),M,N) -> mark#(N) p20: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p5: a__U21#(tt(),M,N) -> mark#(N) p6: mark#(U21(X1,X2,X3)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p8: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(plus(X1,X2)) -> mark#(X1) p11: mark#(plus(X1,X2)) -> mark#(X2) p12: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p13: mark#(and(X1,X2)) -> mark#(X1) p14: mark#(isNat(X)) -> a__isNat#(X) p15: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p16: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p17: a__isNat#(s(V1)) -> a__isNat#(V1) p18: mark#(s(X)) -> mark#(X) p19: a__plus#(N,s(M)) -> a__isNat#(M) p20: a__U21#(tt(),M,N) -> mark#(M) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 + 2 U11_A(x1,x2) = x1 + x2 + 3 U21_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U21#_A(x1,x2,x3) = x2 + x3 + 4 mark_A(x1) = x1 tt_A() = 0 a__plus#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 + 3 a__and_A(x1,x2) = x1 + x2 a__isNat_A(x1) = 0 isNat_A(x1) = 0 plus_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x2 + 2 and_A(x1,x2) = x1 + x2 a__isNat#_A(x1) = 2 a__U11_A(x1,x2) = x1 + x2 + 3 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__plus_A(x1,x2) = x1 + x2 |0|_A() = 4 precedence: mark# = a__and# = a__isNat# > a__plus# > a__U21# > U11 = U21 = mark = tt = s = a__and = a__isNat = isNat = plus = and = a__U11 = a__U21 = a__plus = |0| partial status: pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(a__U21#) = [] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [2] pi(s) = [] pi(a__and) = [] pi(a__isNat) = [] pi(isNat) = [] pi(plus) = [] pi(a__and#) = [] pi(and) = [] pi(a__isNat#) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(|0|) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p5: a__U21#(tt(),M,N) -> mark#(N) p6: mark#(U21(X1,X2,X3)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p8: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(plus(X1,X2)) -> mark#(X1) p11: mark#(plus(X1,X2)) -> mark#(X2) p12: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p13: mark#(and(X1,X2)) -> mark#(X1) p14: mark#(isNat(X)) -> a__isNat#(X) p15: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p16: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p17: a__isNat#(s(V1)) -> a__isNat#(V1) p18: mark#(s(X)) -> mark#(X) p19: a__U21#(tt(),M,N) -> mark#(M) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p13: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p14: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p15: a__U21#(tt(),M,N) -> mark#(M) p16: mark#(U21(X1,X2,X3)) -> mark#(X1) p17: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p18: a__U21#(tt(),M,N) -> mark#(N) p19: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 a__isNat_A(x1) = 0 tt_A() = 0 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 a__plus#_A(x1,x2) = x1 + x2 + 1 a__U21#_A(x1,x2,x3) = x2 + x3 + 1 a__and_A(x1,x2) = x1 + x2 U21_A(x1,x2,x3) = x1 + x2 + x3 + 2 a__U11_A(x1,x2) = x1 + x2 + 2 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 2 a__plus_A(x1,x2) = x1 + x2 + 2 |0|_A() = 0 precedence: a__plus# = a__U21# > mark# = U11 = s = isNat = a__isNat# = plus = a__and# = a__isNat = tt = and = mark = a__and = U21 = a__U11 = a__U21 = a__plus = |0| partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(U21) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(|0|) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p13: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p14: a__U21#(tt(),M,N) -> mark#(M) p15: mark#(U21(X1,X2,X3)) -> mark#(X1) p16: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p17: a__U21#(tt(),M,N) -> mark#(N) p18: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p5: a__U21#(tt(),M,N) -> mark#(N) p6: mark#(U21(X1,X2,X3)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> mark#(X1) p8: mark#(plus(X1,X2)) -> mark#(X2) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: a__and#(tt(),X) -> mark#(X) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(isNat(X)) -> a__isNat#(X) p13: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p14: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p15: a__isNat#(s(V1)) -> a__isNat#(V1) p16: mark#(s(X)) -> mark#(X) p17: a__U21#(tt(),M,N) -> mark#(M) p18: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 + 2 U11_A(x1,x2) = x1 + x2 + 4 U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__U21#_A(x1,x2,x3) = x2 + x3 + 7 mark_A(x1) = x1 tt_A() = 0 a__plus#_A(x1,x2) = x1 + x2 + 5 s_A(x1) = x1 + 3 a__and_A(x1,x2) = x1 + x2 a__isNat_A(x1) = 0 isNat_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 3 and_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = x2 + 2 a__isNat#_A(x1) = 2 a__U11_A(x1,x2) = x1 + x2 + 4 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 3 |0|_A() = 1 precedence: mark# = a__and# = a__isNat# > mark = a__and = a__isNat = and = |0| > s = isNat = a__U11 = a__U21 = a__plus > plus > U11 > a__U21# = tt = a__plus# > U21 partial status: pi(mark#) = [] pi(U11) = [] pi(U21) = [3] pi(a__U21#) = [3] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [] pi(s) = [] pi(a__and) = [] pi(a__isNat) = [] pi(isNat) = [] pi(plus) = [2] pi(and) = [] pi(a__and#) = [] pi(a__isNat#) = [] pi(a__U11) = [1] pi(a__U21) = [] pi(a__plus) = [2] pi(|0|) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p5: mark#(U21(X1,X2,X3)) -> mark#(X1) p6: mark#(plus(X1,X2)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> mark#(X2) p8: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p13: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(s(X)) -> mark#(X) p16: a__U21#(tt(),M,N) -> mark#(M) p17: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(U21(X1,X2,X3)) -> mark#(X1) p13: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p14: a__U21#(tt(),M,N) -> mark#(M) p15: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p16: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p17: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 + 2 isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 a__isNat_A(x1) = 0 tt_A() = 0 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U21_A(x1,x2,x3) = x1 + x2 + x3 + 4 a__U21#_A(x1,x2,x3) = x2 + x3 + 2 a__plus#_A(x1,x2) = x1 + x2 + 1 a__and_A(x1,x2) = x1 + x2 a__U11_A(x1,x2) = x1 + x2 + 2 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 4 a__plus_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 precedence: a__U21# > a__isNat = and = mark = a__and > a__plus > a__U11 = |0| > tt = a__U21 > s > mark# = U11 = isNat = a__isNat# = plus = a__and# = U21 = a__plus# partial status: pi(mark#) = [] pi(U11) = [2] pi(s) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [1] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(U21) = [1, 2] pi(a__U21#) = [] pi(a__plus#) = [1, 2] pi(a__and) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(|0|) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(U21(X1,X2,X3)) -> mark#(X1) p13: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p14: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p15: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p16: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__U21#(a__and(a__isNat(M),isNat(N)),M,N) p5: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U21(X1,X2,X3)) -> mark#(X1) p8: mark#(plus(X1,X2)) -> mark#(X1) p9: mark#(plus(X1,X2)) -> mark#(X2) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(isNat(X)) -> a__isNat#(X) p13: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p14: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p15: a__isNat#(s(V1)) -> a__isNat#(V1) p16: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 + 2 U11_A(x1,x2) = x1 + x2 U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__U21#_A(x1,x2,x3) = x2 + 2 mark_A(x1) = x1 tt_A() = 0 a__plus#_A(x1,x2) = x2 + 1 s_A(x1) = x1 + 3 a__and_A(x1,x2) = x1 + x2 a__isNat_A(x1) = 0 isNat_A(x1) = 0 a__and#_A(x1,x2) = x1 + x2 + 2 plus_A(x1,x2) = x1 + x2 + 3 and_A(x1,x2) = x1 + x2 a__isNat#_A(x1) = 2 a__U11_A(x1,x2) = x1 + x2 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 3 |0|_A() = 1 precedence: mark# = a__and# = a__isNat# > a__U21# > U11 = U21 = mark = tt = a__plus# = s = a__and = a__isNat = isNat = plus = and = a__U11 = a__U21 = a__plus = |0| partial status: pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(a__U21#) = [] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [2] pi(s) = [] pi(a__and) = [] pi(a__isNat) = [] pi(isNat) = [] pi(a__and#) = [] pi(plus) = [] pi(and) = [] pi(a__isNat#) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(|0|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U21(X1,X2,X3)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> mark#(X1) p8: mark#(plus(X1,X2)) -> mark#(X2) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p13: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(U21(X1,X2,X3)) -> mark#(X1) p13: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p14: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p15: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 + 1 isNat_A(x1) = 0 a__isNat#_A(x1) = 0 plus_A(x1,x2) = x1 + x2 + 2 a__and#_A(x1,x2) = x2 a__isNat_A(x1) = 0 tt_A() = 0 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 U21_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__U21#_A(x1,x2,x3) = x1 + x3 + 2 a__plus#_A(x1,x2) = 1 a__U11_A(x1,x2) = x1 + x2 + 1 a__U21_A(x1,x2,x3) = x1 + x2 + x3 + 3 a__plus_A(x1,x2) = x1 + x2 + 2 a__and_A(x1,x2) = x1 + x2 |0|_A() = 0 precedence: plus = a__isNat = tt = and = mark = a__U21 = a__plus = a__and > isNat > s > U21 > mark# = U11 = a__isNat# = a__and# = a__U21# = a__plus# = a__U11 = |0| partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(U21) = [3] pi(a__U21#) = [] pi(a__plus#) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNat(X)) -> a__isNat#(X) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(plus(X1,X2)) -> mark#(X2) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p13: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p14: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p3: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p4: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(plus(X1,X2)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> mark#(X2) p8: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(isNat(X)) -> a__isNat#(X) p11: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p12: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p13: a__isNat#(s(V1)) -> a__isNat#(V1) p14: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 1 U21_A(x1,x2,x3) = x2 + x3 a__U21#_A(x1,x2,x3) = x2 mark_A(x1) = x1 tt_A() = 0 a__plus#_A(x1,x2) = 0 s_A(x1) = x1 a__and#_A(x1,x2) = x2 a__isNat_A(x1) = 0 isNat_A(x1) = 0 plus_A(x1,x2) = x1 + x2 and_A(x1,x2) = x1 + x2 a__isNat#_A(x1) = 0 a__U11_A(x1,x2) = x1 + x2 + 1 a__U21_A(x1,x2,x3) = x2 + x3 a__plus_A(x1,x2) = x1 + x2 a__and_A(x1,x2) = x1 + x2 |0|_A() = 1 precedence: mark# = U11 = U21 = a__U21# = mark = tt = a__plus# = s = a__and# = a__isNat = isNat = plus = and = a__isNat# = a__U11 = a__U21 = a__plus = a__and = |0| partial status: pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(a__U21#) = [] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [] pi(s) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNat) = [] pi(plus) = [] pi(and) = [] pi(a__isNat#) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p2: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p3: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(plus(X1,X2)) -> mark#(X1) p6: mark#(plus(X1,X2)) -> mark#(X2) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(isNat(X)) -> a__isNat#(X) p10: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p11: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p12: a__isNat#(s(V1)) -> a__isNat#(V1) p13: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U21(X1,X2,X3)) -> a__U21#(mark(X1),X2,X3) p2: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p3: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(s(X)) -> mark#(X) p6: mark#(isNat(X)) -> a__isNat#(X) p7: a__isNat#(s(V1)) -> a__isNat#(V1) p8: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p9: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 U21_A(x1,x2,x3) = x2 + x3 + 4 a__U21#_A(x1,x2,x3) = x2 + x3 + 3 mark_A(x1) = x1 tt_A() = 0 a__plus#_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 a__and#_A(x1,x2) = x2 + 1 a__isNat_A(x1) = x1 isNat_A(x1) = x1 a__isNat#_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 4 and_A(x1,x2) = x1 + x2 + 4 a__U11_A(x1,x2) = x2 + 1 a__U21_A(x1,x2,x3) = x2 + x3 + 4 a__plus_A(x1,x2) = x1 + x2 + 4 a__and_A(x1,x2) = x1 + x2 + 4 |0|_A() = 0 U11_A(x1,x2) = x2 + 1 precedence: mark# = a__plus# = a__and# > a__isNat# > mark = tt = a__isNat = and = a__U11 = a__U21 = a__plus = a__and > s = plus > U21 = |0| > a__U21# = isNat = U11 partial status: pi(mark#) = [] pi(U21) = [3] pi(a__U21#) = [] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [1] pi(s) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(and) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(a__and) = [] pi(|0|) = [] pi(U11) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p2: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNat(N)) p3: a__and#(tt(),X) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(isNat(X)) -> a__isNat#(X) p6: a__isNat#(s(V1)) -> a__isNat#(V1) p7: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p8: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(plus(X1,X2)) -> mark#(X2) p12: mark#(plus(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(plus(X1,X2)) -> mark#(X1) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(isNat(X)) -> a__isNat#(X) p7: a__isNat#(plus(V1,V2)) -> a__and#(a__isNat(V1),isNat(V2)) p8: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p9: a__isNat#(s(V1)) -> a__isNat#(V1) p10: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__and#_A(x1,x2) = x2 + 2 tt_A() = 7 mark#_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 4 and_A(x1,x2) = x1 + x2 + 3 mark_A(x1) = x1 isNat_A(x1) = x1 a__isNat#_A(x1) = x1 a__isNat_A(x1) = x1 s_A(x1) = x1 + 2 a__U11_A(x1,x2) = x2 + 12 a__U21_A(x1,x2,x3) = x2 + x3 + 6 a__plus_A(x1,x2) = x1 + x2 + 4 a__and_A(x1,x2) = x1 + x2 + 3 |0|_A() = 8 U11_A(x1,x2) = x2 + 12 U21_A(x1,x2,x3) = x2 + x3 + 6 precedence: tt = mark > a__and > mark# > and = a__isNat# = a__U11 = a__U21 = a__plus > a__isNat = s > a__and# > U11 > plus = U21 > isNat = |0| partial status: pi(a__and#) = [] pi(tt) = [] pi(mark#) = [1] pi(plus) = [] pi(and) = [1, 2] pi(mark) = [1] pi(isNat) = [] pi(a__isNat#) = [1] pi(a__isNat) = [] pi(s) = [1] pi(a__U11) = [] pi(a__U21) = [] pi(a__plus) = [] pi(a__and) = [1, 2] pi(|0|) = [] pi(U11) = [] pi(U21) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(plus(X1,X2)) -> mark#(X1) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(isNat(X)) -> a__isNat#(X) p7: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p8: a__isNat#(s(V1)) -> a__isNat#(V1) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p9} {p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p5: mark#(plus(X1,X2)) -> mark#(X2) p6: mark#(plus(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__and#_A(x1,x2) = x1 + x2 + 4 tt_A() = 4 mark#_A(x1) = x1 + 6 s_A(x1) = x1 + 8 and_A(x1,x2) = x1 + x2 mark_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 7 a__U11_A(x1,x2) = x2 + 2 a__U21_A(x1,x2,x3) = x2 + x3 + 15 a__plus_A(x1,x2) = x1 + x2 + 7 a__and_A(x1,x2) = x1 + x2 a__isNat_A(x1) = x1 + 6 |0|_A() = 1 isNat_A(x1) = x1 + 6 U11_A(x1,x2) = x2 + 2 U21_A(x1,x2,x3) = x2 + x3 + 15 precedence: mark# > a__and# = s = plus = a__U21 = a__plus = a__isNat = |0| = isNat = U21 > mark > a__U11 = U11 > a__and > tt = and partial status: pi(a__and#) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(and) = [] pi(mark) = [1] pi(plus) = [] pi(a__U11) = [2] pi(a__U21) = [] pi(a__plus) = [] pi(a__and) = [] pi(a__isNat) = [] pi(|0|) = [] pi(isNat) = [] pi(U11) = [2] pi(U21) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(plus(X1,X2)) -> mark#(X2) p5: mark#(plus(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(plus(X1,X2)) -> mark#(X1) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 s_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 and_A(x1,x2) = x1 + x2 + 1 precedence: mark# = s = plus = and partial status: pi(mark#) = [] pi(s) = [1] pi(plus) = [2] pi(and) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(plus(X1,X2)) -> mark#(X1) p2: mark#(plus(X1,X2)) -> mark#(X2) p3: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(plus(X1,X2)) -> mark#(X1) p2: mark#(and(X1,X2)) -> mark#(X1) p3: mark#(plus(X1,X2)) -> mark#(X2) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 1 and_A(x1,x2) = x1 + x2 + 1 precedence: mark# = plus > and partial status: pi(mark#) = [1] pi(plus) = [] pi(and) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(plus(X1,X2)) -> mark#(X2) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(plus(X1,X2)) -> mark#(X2) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 and_A(x1,x2) = x1 + x2 + 1 plus_A(x1,x2) = x1 + x2 + 1 precedence: mark# = plus > and partial status: pi(mark#) = [] pi(and) = [] pi(plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(plus(X1,X2)) -> mark#(X2) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(plus(X1,X2)) -> mark#(X2) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: mark#_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 1 precedence: mark# = plus partial status: pi(mark#) = [] pi(plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p2: a__isNat#(s(V1)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNat#_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 + 1 precedence: a__isNat# > plus = s partial status: pi(a__isNat#) = [1] pi(plus) = [1, 2] pi(s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),N) -> mark(N) r2: a__U21(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(plus(V1,V2)) -> a__and(a__isNat(V1),isNat(V2)) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__plus(N,|0|()) -> a__U11(a__isNat(N),N) r8: a__plus(N,s(M)) -> a__U21(a__and(a__isNat(M),isNat(N)),M,N) r9: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r10: mark(U21(X1,X2,X3)) -> a__U21(mark(X1),X2,X3) r11: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r12: mark(and(X1,X2)) -> a__and(mark(X1),X2) r13: mark(isNat(X)) -> a__isNat(X) r14: mark(tt()) -> tt() r15: mark(s(X)) -> s(mark(X)) r16: mark(|0|()) -> |0|() r17: a__U11(X1,X2) -> U11(X1,X2) r18: a__U21(X1,X2,X3) -> U21(X1,X2,X3) r19: a__plus(X1,X2) -> plus(X1,X2) r20: a__and(X1,X2) -> and(X1,X2) r21: a__isNat(X) -> isNat(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: a__isNat#_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 1 precedence: a__isNat# = plus partial status: pi(a__isNat#) = [] pi(plus) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.