YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p20: activate#(n__isNat(X)) -> isNat#(X) p21: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,|0|()) -> isNat#(N) p18: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 6 tt_A() = 6 activate#_A(x1) = x1 + 2 n__isNat_A(x1) = x1 isNat#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 2 n__plus_A(x1,x2) = x1 + x2 + 3 plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 2 activate_A(x1) = x1 and#_A(x1,x2) = x2 + 2 isNat_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 2 and_A(x1,x2) = x2 + 1 |0|_A() = 7 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 5 plus_A(x1,x2) = x1 + x2 + 3 n__0_A() = 7 precedence: U11# = tt = n__s = n__plus = plus# = s = and# = U21# = U11 = U21 = plus > activate# = isNat# > n__isNat = isNat > |0| = n__0 > activate = and partial status: pi(U11#) = [2] pi(tt) = [] pi(activate#) = [1] pi(n__isNat) = [1] pi(isNat#) = [1] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [1, 2] pi(s) = [] pi(activate) = [1] pi(and#) = [] pi(isNat) = [1] pi(U21#) = [] pi(and) = [2] pi(|0|) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> activate#(N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> isNat#(N) p17: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__isNat(X)) -> isNat#(X) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: U11#_A(x1,x2) = x2 + 7 tt_A() = 2 activate#_A(x1) = x1 + 4 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 3 |0|_A() = 6 isNat_A(x1) = x1 + 1 isNat#_A(x1) = x1 + 5 and#_A(x1,x2) = x1 + x2 + 3 activate_A(x1) = x1 n__isNat_A(x1) = x1 + 1 n__s_A(x1) = x1 + 6 s_A(x1) = x1 + 6 U21#_A(x1,x2,x3) = x2 + x3 + 7 and_A(x1,x2) = x2 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 6 plus_A(x1,x2) = x1 + x2 n__0_A() = 6 precedence: U11# = n__plus = U21# = U21 = plus > n__s = s > activate# = plus# = isNat = isNat# = and# = n__isNat > |0| = n__0 > activate = and = U11 > tt partial status: pi(U11#) = [2] pi(tt) = [] pi(activate#) = [1] pi(n__plus) = [1, 2] pi(plus#) = [1, 2] pi(|0|) = [] pi(isNat) = [1] pi(isNat#) = [1] pi(and#) = [] pi(activate) = [1] pi(n__isNat) = [1] pi(n__s) = [1] pi(s) = [1] pi(U21#) = [2, 3] pi(and) = [2] pi(U11) = [2] pi(U21) = [3] pi(plus) = [1, 2] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,|0|()) -> U11#(isNat(N),N) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__isNat(X)) -> isNat#(X) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> isNat#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__isNat(X)) -> isNat#(X) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> activate#(M) p13: U21#(tt(),M,N) -> activate#(N) p14: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p15: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 4 plus#_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 + 4 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 4 n__isNat_A(x1) = x1 + 2 activate_A(x1) = x1 and#_A(x1,x2) = x2 + 1 isNat_A(x1) = x1 + 2 tt_A() = 0 U21#_A(x1,x2,x3) = x2 + x3 + 5 and_A(x1,x2) = x2 + 1 |0|_A() = 0 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 8 plus_A(x1,x2) = x1 + x2 + 4 n__0_A() = 0 precedence: n__isNat = isNat > plus# = U21# > isNat# > tt > activate# = and# > n__plus = and = U11 = plus > activate > s = n__s = |0| = U21 = n__0 partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(isNat#) = [1] pi(n__s) = [] pi(n__isNat) = [] pi(activate) = [1] pi(and#) = [2] pi(isNat) = [] pi(tt) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p11: U21#(tt(),M,N) -> activate#(M) p12: U21#(tt(),M,N) -> activate#(N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p4: and#(tt(),X) -> activate#(X) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__s(V1)) -> activate#(V1) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> isNat#(M) p13: U21#(tt(),M,N) -> activate#(N) p14: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 3 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 + 3 |0|_A() = 2 isNat#_A(x1) = x1 + 3 and#_A(x1,x2) = x2 + 3 isNat_A(x1) = 0 activate_A(x1) = x1 n__isNat_A(x1) = 0 tt_A() = 0 n__s_A(x1) = x1 s_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 3 and_A(x1,x2) = x2 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 plus_A(x1,x2) = x1 + x2 n__0_A() = 2 precedence: activate# = n__plus = plus# = |0| = isNat# = and# = isNat = activate = n__isNat = tt = n__s = s = U21# = and = U11 = U21 = plus = n__0 partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(activate) = [] pi(n__isNat) = [] pi(tt) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__s(V1)) -> activate#(V1) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> isNat#(M) p12: U21#(tt(),M,N) -> activate#(N) p13: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p11: U21#(tt(),M,N) -> activate#(M) p12: U21#(tt(),M,N) -> activate#(N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 2 plus#_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 activate_A(x1) = x1 and#_A(x1,x2) = x2 + 1 isNat_A(x1) = 0 n__isNat_A(x1) = 0 tt_A() = 0 U21#_A(x1,x2,x3) = x2 + x3 + 1 and_A(x1,x2) = x2 U11_A(x1,x2) = x2 + 2 U21_A(x1,x2,x3) = x2 + x3 + 2 plus_A(x1,x2) = x1 + x2 + 2 |0|_A() = 1 n__0_A() = 1 precedence: activate# = n__plus = plus# = s = isNat# = n__s = activate = and# = isNat = n__isNat = tt = U21# = and = U11 = U21 = plus = |0| = n__0 partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> activate#(M) p11: U21#(tt(),M,N) -> activate#(N) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p5: and#(tt(),X) -> activate#(X) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: U21#(tt(),M,N) -> activate#(N) p12: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 10 plus#_A(x1,x2) = x1 + x2 + 9 s_A(x1) = x1 + 3 U21#_A(x1,x2,x3) = x2 + x3 + 10 and_A(x1,x2) = x2 + 7 isNat_A(x1) = x1 + 4 n__isNat_A(x1) = x1 + 4 tt_A() = 14 activate_A(x1) = x1 and#_A(x1,x2) = x1 + x2 + 1 isNat#_A(x1) = x1 n__s_A(x1) = x1 + 3 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 13 plus_A(x1,x2) = x1 + x2 + 10 |0|_A() = 15 n__0_A() = 15 precedence: n__plus = plus > s = and = isNat = n__isNat = tt = activate = and# = n__s = U11 = U21 > |0| > n__0 > activate# > plus# = U21# > isNat# partial status: pi(activate#) = [1] pi(n__plus) = [1] pi(plus#) = [] pi(s) = [] pi(U21#) = [] pi(and) = [2] pi(isNat) = [1] pi(n__isNat) = [1] pi(tt) = [] pi(activate) = [1] pi(and#) = [] pi(isNat#) = [1] pi(n__s) = [] pi(U11) = [2] pi(U21) = [] pi(plus) = [1] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__s(V1)) -> activate#(V1) p10: U21#(tt(),M,N) -> activate#(N) p11: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p7: U21#(tt(),M,N) -> activate#(M) p8: U21#(tt(),M,N) -> activate#(N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 n__plus_A(x1,x2) = x1 + x2 + 3 plus#_A(x1,x2) = x1 + x2 + 2 s_A(x1) = x1 + 3 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 3 activate_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + x3 + 4 and_A(x1,x2) = x2 isNat_A(x1) = 2 n__isNat_A(x1) = 2 tt_A() = 0 U11_A(x1,x2) = x2 + 3 U21_A(x1,x2,x3) = x2 + x3 + 6 plus_A(x1,x2) = x1 + x2 + 3 |0|_A() = 1 n__0_A() = 1 precedence: s = n__s = activate = and = isNat = U11 = U21 = plus > n__isNat > n__plus > activate# = plus# = isNat# = U21# = tt = |0| = n__0 partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [1] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U21#) = [3] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p7: U21#(tt(),M,N) -> activate#(M) p8: U21#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> activate#(N) p4: U21#(tt(),M,N) -> activate#(M) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 2 n__plus_A(x1,x2) = x1 + x2 plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 4 U21#_A(x1,x2,x3) = x2 + x3 + 3 and_A(x1,x2) = x2 isNat_A(x1) = x1 + 3 n__isNat_A(x1) = x1 + 3 tt_A() = 1 isNat#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 4 activate_A(x1) = x1 U11_A(x1,x2) = x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 4 plus_A(x1,x2) = x1 + x2 |0|_A() = 2 n__0_A() = 2 precedence: n__plus = plus > U21 > U11 > s = n__s > activate# = plus# = U21# = isNat# > tt = |0| = n__0 > isNat = n__isNat > and > activate partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] pi(plus#) = [2] pi(s) = [1] pi(U21#) = [2] pi(and) = [2] pi(isNat) = [1] pi(n__isNat) = [1] pi(tt) = [] pi(isNat#) = [1] pi(n__s) = [1] pi(activate) = [1] pi(U11) = [] pi(U21) = [] pi(plus) = [1, 2] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p3: U21#(tt(),M,N) -> activate#(M) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p7: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 5 plus#_A(x1,x2) = x2 + 1 s_A(x1) = x1 + 4 isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 4 activate_A(x1) = x1 U21#_A(x1,x2,x3) = x2 + 5 and_A(x1,x2) = x2 isNat_A(x1) = 3 n__isNat_A(x1) = 3 tt_A() = 2 U11_A(x1,x2) = x1 + x2 + 1 U21_A(x1,x2,x3) = x2 + x3 + 9 plus_A(x1,x2) = x1 + x2 + 5 |0|_A() = 0 n__0_A() = 0 precedence: activate = and = isNat > isNat# > s = U11 = U21 = plus > n__plus > plus# > n__s = U21# > activate# > |0| > n__0 > n__isNat = tt partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] pi(plus#) = [2] pi(s) = [] pi(isNat#) = [1] pi(n__s) = [1] pi(activate) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [1, 2] pi(|0|) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__s(V1)) -> activate#(V1) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p2: plus#(N,s(M)) -> isNat#(M) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: activate#_A(x1) = x1 + 1 n__plus_A(x1,x2) = x1 + x2 + 4 plus#_A(x1,x2) = x2 + 3 s_A(x1) = x1 isNat#_A(x1) = x1 + 2 n__s_A(x1) = x1 activate_A(x1) = x1 U11_A(x1,x2) = x1 + x2 + 1 tt_A() = 1 U21_A(x1,x2,x3) = x2 + x3 + 4 plus_A(x1,x2) = x1 + x2 + 4 and_A(x1,x2) = x2 isNat_A(x1) = 3 n__0_A() = 5 n__isNat_A(x1) = 3 |0|_A() = 5 precedence: plus# = s = activate = U11 = U21 = plus = and = isNat > n__s > tt = n__0 = |0| > n__plus = n__isNat > isNat# > activate# partial status: pi(activate#) = [1] pi(n__plus) = [2] pi(plus#) = [] pi(s) = [] pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__isNat) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> isNat#(M) p2: isNat#(n__plus(V1,V2)) -> activate#(V2) p3: isNat#(n__s(V1)) -> isNat#(activate(V1)) p4: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^1 order: lexicographic order interpretations: isNat#_A(x1) = x1 + 1 n__s_A(x1) = x1 + 2 activate_A(x1) = x1 U11_A(x1,x2) = x2 + 1 tt_A() = 0 U21_A(x1,x2,x3) = x2 + x3 + 4 s_A(x1) = x1 + 2 plus_A(x1,x2) = x1 + x2 + 2 and_A(x1,x2) = x1 + x2 + 1 isNat_A(x1) = x1 + 1 n__0_A() = 0 n__plus_A(x1,x2) = x1 + x2 + 2 n__isNat_A(x1) = x1 + 1 |0|_A() = 0 precedence: isNat# > tt = n__0 = |0| > U11 = U21 = plus = n__plus > and = isNat = n__isNat > n__s = s > activate partial status: pi(isNat#) = [1] pi(n__s) = [] pi(activate) = [1] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [1, 2] pi(isNat) = [1] pi(n__0) = [] pi(n__plus) = [] pi(n__isNat) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.