YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) pred(s(x)) -> x minus(x,|0|()) -> x minus(x,s(y)) -> pred(minus(x,y)) gcd(|0|(),y) -> y gcd(s(x),|0|()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(x,s(y)) -> pred#(minus(x,y)) p3: minus#(x,s(y)) -> minus#(x,y) p4: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p5: gcd#(s(x),s(y)) -> le#(y,x) p6: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) p7: if_gcd#(true(),s(x),s(y)) -> minus#(x,y) p8: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p9: if_gcd#(false(),s(x),s(y)) -> minus#(y,x) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p4, p6, p8} {p1} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p3: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_gcd#_A(x1,x2,x3) = x2 + ((1,0),(0,0)) x3 + (1,2) false_A() = (1,1) s_A(x1) = ((1,0),(1,1)) x1 + (4,4) gcd#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,3) minus_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(1,0)) x2 + (2,2) le_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(1,0)) x2 + (11,8) true_A() = (9,6) pred_A(x1) = x1 |0|_A() = (10,7) precedence: gcd# > false = s = |0| > if_gcd# > le = true > minus > pred partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [1] pi(gcd#) = [1] pi(minus) = [] pi(le) = [] pi(true) = [] pi(pred) = [1] pi(|0|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_gcd#_A(x1,x2,x3) = (0,0) false_A() = (1,1) s_A(x1) = ((0,0),(1,0)) x1 + (2,1) gcd#_A(x1,x2) = (0,0) minus_A(x1,x2) = (4,6) le_A(x1,x2) = (3,3) true_A() = (1,2) pred_A(x1) = ((0,0),(1,0)) x1 + (3,1) |0|_A() = (0,0) precedence: true = |0| > if_gcd# = gcd# = minus = le > false = s = pred partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [] pi(gcd#) = [] pi(minus) = [] pi(le) = [] pi(true) = [] pi(pred) = [] pi(|0|) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_gcd#_A(x1,x2,x3) = ((1,0),(0,0)) x1 + x2 + ((1,0),(0,0)) x3 + (1,1) false_A() = (1,0) s_A(x1) = ((1,0),(1,1)) x1 + (5,4) gcd#_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (4,2) minus_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(1,0)) x2 + (2,1) le_A(x1,x2) = ((0,0),(1,0)) x1 + (2,0) pred_A(x1) = x1 + (0,4) |0|_A() = (2,2) true_A() = (1,1) precedence: minus = |0| > true > if_gcd# = s = gcd# = le > false = pred partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [1] pi(gcd#) = [1] pi(minus) = [] pi(le) = [] pi(pred) = [1] pi(|0|) = [] pi(true) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: if_gcd#_A(x1,x2,x3) = (1,1) false_A() = (0,1) s_A(x1) = x1 + (2,3) gcd#_A(x1,x2) = x1 minus_A(x1,x2) = (0,0) le_A(x1,x2) = (1,2) pred_A(x1) = ((1,0),(0,0)) x1 |0|_A() = (0,2) true_A() = (0,0) precedence: s > if_gcd# > |0| > true > false = gcd# = minus = le = pred partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [1] pi(gcd#) = [] pi(minus) = [] pi(le) = [] pi(pred) = [] pi(|0|) = [] pi(true) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = ((1,0),(0,0)) x1 s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: le# > s partial status: pi(le#) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: le#_A(x1,x2) = (0,0) s_A(x1) = (1,1) precedence: le# = s partial status: pi(le#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = x2 s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: minus# > s partial status: pi(minus#) = [2] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: minus#_A(x1,x2) = (0,0) s_A(x1) = (0,1) precedence: s > minus# partial status: pi(minus#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.